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2nd Year EEE and EIE

Department of Electrical and Electronic Engineering, Imperial College London, UK

Introduction

This lab will teach you some fundamentals of Digital Signal Processing (DSP), and introduce you to MATLAB,
a mathematical tool that integrates numerical analysis, matrix computation and graphics in an easy-to-use
environment. MATLAB is highly interactive; its interpretative nature allows you to explore mathematical
concepts in signal processing without tedious programming. Once grasped, the same tool can be used for other
subjects such as circuit analysis, communications, and control engineering.

Learning Outcomes

At the end of this lab you will be able to:

• Generate and analyse discrete-time signals using MATLAB

• Analyse signals by applying Fourier transforms and window functions

• Analyse digital filters and their responses

• Demonstrate conceptual understanding of discrete signal processing

• Evaluate your work and your results

Requirements

To complete this lab you will need to download the following 7 files (available on Blackboard): ecg.mat,
unknown.mat, piano.wav, track 1.wav, coronavirus.mat, aircrew.wav and aircrew coef.mat.

Recommended Textbooks

This experiment is designed to support the second year Signals and Systems course. Since the laboratory and
the lectures may not be synchronised, you may need to learn certain aspects of signal processing ahead of the
lectures. While the notes provided in this experiment attempt to explain certain basic concepts, they are far
from complete. You will likely find the recommended textbook helpful when studying this experiment as well
as the lecture course: S. Haykin and B. Van Veen, “Signals and Systems,” 2nd Ed., Wiley, 2003.

Timetable

There are 8 exercises in this coursework; you should aim to complete all of them in approximately 9 hours.
Drop-in sessions for this module will also be provided through MS Teams.

Assessment

This laboratory coursework will be assessed through an online midterm test.

Contact

This lab was developed and designed by Aidan O. T. Hogg and Patrick A. Naylor. Please email Aidan O.
T. Hogg {aidan.hogg13@imperial.ac.uk} if you have any suggestions or comments about this document (as this
will help future year groups).
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Exercise 1 - Learning MATLAB

Objectives

• To become familiar with MATLAB

• To be able to generate discrete signals in MATLAB

Launch MATLAB, click New, select Live Script (https://www.mathworks.com/help/matlab/matlab prog/
create-live-scripts.html). After you create a live script, you will be able to run the code you add to it.

GTA Tip

Don’t use the terminal window because all of your code will be lost as soon as you close MATLAB.

So let’s start by considering a sampled sine wave: x[n] = A sin(Ωn + φ). In general, it takes three parameters
to describe a real sinusoidal signal completely: amplitude, A, normalised angular frequency, Ω, and phase, φ.

Definition:

Ω =
ω

fs
= 2π

f

fs
= 2πF, where F =

f

fs
and ω = 2πf

It is common to use f for ‘real’ frequencies and ω for ‘real’ angular frequencies. The scaled versions being F
for normalised frequency and Ω for normalised angular frequency where the units of Ω are ‘radians per sample’
and F are ‘cycles per sample’.

Now create a plot of a sampled sine wave with a frequency, f , of 1KHz and a sampling frequency, fs, of 25.6kHz
where N = 128 meaning that 128 data points should be generated.

Question 1: Before plotting this sine wave in MATLAB try to calculate by hand how many cycles of the sine
wave will be displayed in the plot.

To check your answer let’s now plot the sine wave in MATLAB. In MATLAB you can create a vector, n, with
128 elements by entering the following:

1 % define constants
2 fsamp = 25600;
3 fsig = 1000;
4 Nsamp = 128;
5 n = 0: Nsamp−1;

GTA Tip

• You do not need to declare variables

• Anything between ‘%’ and newline is a comment

• The result of a statement is echoed unless the statement terminates with a semicolon ‘;’

• The colon ‘:’ has special significance, for example, x=1:5 creates a row vector containing five elements,
vector x = [1 2 3 4 5].
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Now check the ‘Workspace’ on the right-hand side of the MATLAB window (go to ‘https://uk.mathworks.com/
help/matlab/ref/workspace.html’ to discover more). This tab allows you to check which variables are defined
at this stage and also their dimension(s) where matrices are reported as row by column.

To create the sine wave x[n] = sin(2π f
fs
n) simply enter:

1 x = sin (2∗ pi ∗( fsig / fsamp ) ∗n);
2 figure ;
3 plot (x)

This plots x against the sample index (from 0 to 127). Try to see if you can plot x against time by creating a
vector t with the first element being 0 and the last element being 127×Tsamp, where elements in between are
at increments of Tsamp. Hint ‘Tsamp = 1/ fsamp;’.

Now you can add titles and labels to your plot:

1 grid on
2 title (’ Simple Sine Wave ’)
3 xlabel (’Time [s]’)
4 ylabel (’ Amplitude ’)

GTA Tip

You can also plot the sine wave using asterisk markers for each discrete value point by entering the command
plot(t, x, ’*’) and change the colour of the curve to red with plot(t, x, ’r’). The output can
be given as a discrete signal using the command stem(x). The plot window can also be divided with the
subplot command and the xlim command allows examination of a particular region of the plot (go to
‘https://uk.mathworks.com’ to discover more).

Sine waves are such useful waveforms let’s write a function to generate them for any signal frequency, f ,
sampling frequency, fs, and number of samples, N . In MATLAB, functions are individually stored as a file with
extension ‘.m’. To define a function sinegen, create a file sinegen.m using the MATLAB editor by selecting
New Function from the File menu.

1 function y = sinegen ( fsamp , fsig , Nsamp )
2 % body of the function
3 end

Save the file in your home directory with the Save As option from the File menu. To test sinegen, enter:

1 y = sinegen ( fsamp , fsig , Nsamp );

GTA Tip

If MATLAB gives the error message undefined function, use the ‘Current Folder’ browser (on the left-hand
side of the MATLAB window by default) to add the folder, containing the function file you have just created,
to the search path. To do this, from the ‘Current Folder’ browser right-click the folder you want to add. Then
from the context menu, select Add to Path, and then select Selected Folders and Subfolders.
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Exercise 2 - Effects of sampling

Objectives

• To understand the effects of sampling especially in the frequency domain

• To understand why sampling might cause the problem of aliasing

Let’s start by thinking about sampling in the time domain, which can be thought of as multiplying a
continuous-time domain signal by a train of impulses. This sampling process is shown in Fig. 1.

t

x(t)

(a) x(t): continuous-time signal

× t

s(t)

(b) s(t): impulse train

= t

xs(t)

(c) xs(t): sampled signal

Figure 1: The sampling process of an continuous-time signal

Note that here xs(t) = x(t)× s(t) =
∑
n x(nT )δ(t− nT ), where −∞ < n <∞ and T = 1/fs and is, therefore,

still a continuous-time signal which is equal to 0 for t 6= nT . This should not be confused with x[n] which is a
discrete-time signal comprising of the amplitudes of the signal at the instants of sampling and only exists for
n = 0, 1, 2, · · · .

Now think about x(t) and s(t) and their frequency domain representations which are shown in Fig. 2.

t

x(t)

(a) x(t): continuous-time signal

−ωm ωm

1

ω

|X(jω)|

(b) Spectrum of the original continuous-time signal x(t)

t

s(t)

(c) s(t): impulse train

−ωs ωs 2ωs 3ωs 4ωs 5ωs 6ωs 7ωs

1
T

ω

|S(jω)|

(d) Spectrum of the original continuous-time signal s(t)

Figure 2: Frequency domain representation of x(t) and s(t)

You may be able to recall that multiplication in the time domain is equivalent to convolution in the frequency
domain. Therefore xs(t) = x(t)×s(t) can be written in the frequency domain as Xs(jω) = X(jω)∗S(jω) where
‘∗’ denotes the linear convolution.

Thus, Xs(jω) will be a periodic function of frequency ω, consisting of the sum of shifted and scaled replicas of
X(jω), shifted by integer multiples of ωs and scaled by 1

T .
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t

xs(t)

(a) xs(t): sampled signal

−ωm ωm ωs 2ωs

1
T

ω

|Xs(jω)|

(b) Spectrum of the sampled signal xs(t)

Figure 3: A sample sine wave and its spectrum

Sampling Theorem

Sampling has the effect, therefore, of creating spectral images at each and every integer multiple of ωs and,
therefore, to avoid information loss due to overlapping spectral images (this distortion is called aliasing) the
following condition must be met:

Definition:

|ωm| <
ωs
2

(Nyquist frequency), where ωs = 2πfs = 2π/T =⇒ |Ω| < π

The frequency ωs/2 is called the Nyquist frequency. If ωm is the highest frequency component in the signal then
sampling above twice this frequency, |2ωm| < ωs, is called oversampling, conversely, sampling below twice this
frequency, |2ωm| > ωs, is called undersampling. Lastly sampling at a frequency exactly twice this frequency,
|2ωm| = ωs, is called critical sampling.

To see aliasing in action lets generate some more plots using sinegen function setting N = 100, fs = 8000Hz
and varying:

(i) f = 150Hz, (ii) f = 300Hz and (iii) f = 600Hz

(iv) f = 7400Hz, (v) f = 7700Hz and (vi) f = 7850Hz

Question 2: Discuss briefly the results of (i)-(iii) and (iv)-(vi) stating what you have observed.

Question 3: Predict the result for frequencies f = 24150Hz, f = 24300Hz and f = 24600Hz and confirm your
prediction with MATLAB.

Question 4: Consider x(t) = cos(100πt)

(a) Determine the minimum sampling rate to avoid aliasing

(b) Write down an expression for x[n] if a sampling frequency of 200Hz is used.

(c) Write down an expression for x[n] if a sampling frequency of 75Hz is used.

Question 5: If the sampling frequency is 48 kHz, what is the normalised angular frequency of the discrete-time
signal corresponding to a sinusoid at 1.2 kHz?

Question 6: Given a signal whose normalised angular frequency is π
4 what is its frequency in terms of the

sampling frequency, fs?
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Exercise 3 - Discrete Fourier Analysis and Synthesis of Signals

Objectives

• To see that any periodic signal can be created from a linear combination of sinusoidal waves

• To introduce the Discrete Fourier Transform (DFT)

• To understand the difference between the amplitude and phase in the frequency domain

We have seen how MATLAB can manipulate data stored as a 1 × 128 vector. Now let us create a matrix S
containing 4 rows of sine waves such that the first row is frequency f , the second row is the second harmonic
2× f and so on. In this case Nsamp = 128, fsig = 1000 and fsamp = 25600.

1 S (1 ,:) = sinegen ( fsamp , fsig , Nsamp );
2 S (2 ,:) = sinegen ( fsamp , 2∗ fsig , Nsamp );
3 S (3 ,:) = sinegen ( fsamp , 3∗ fsig , Nsamp );
4 S (4 ,:) = sinegen ( fsamp , 4∗ fsig , Nsamp );

Note the use of ‘:’ as the second index of S to represent all columns. Examine S and then try plotting it by
entering plot(S).

Question 7: Is this plot correct? Why or why not?

Now plot the transpose of S by using plot(S’).

Note that in MATLAB, ‘’’ denotes the transpose operator for real signals. Check what it does for complex
signals.

We can do the same thing as the above 4 statements by using a for-loop. The following statements create S
with 10 rows of sine waves. The frequencies of the sine waves are at integer multiples of the signal frequency
and are known as harmonics.

1 for i = 1:10
2 S(i ,:) = sinegen ( fsamp , i ∗ fsig , Nsamp );
3 end

Next let us explore what happens when we add all the harmonics together. This can be done by first creating
a row vector p containing ‘ones’, and then multiplying this with the matrix S:

1 p = ones (1 ,10) ;
2 x1 = p ∗S;
3 plot (x1)

Note: you can also use the following command sum(S,1) to achieve the same outcome.

This is equivalent to calculating:

x1[n] =

10∑
k=1

sin(kΩn).

Where Ω = 2π f
fs

is the normalised angular fundamental frequency and n = {0, 1, 2, · · · , Nsamp− 1}.

Question 8: Explain the result x1[n].
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Instead of using a unity row vector, we could choose a different weighting b[k] for each harmonic component in
the summation:

x2[n] =

10∑
k=1

b[k] sin(kΩn).

Try using b[k] = {1, 0, 1/3, 0, 1/5, 0, 1/7, 0, 1/9, 0}.

1 bk = [1 ,0 ,1/3 ,0 ,1/5 ,0 ,1/7 ,0 ,1/9 ,0];
2 x2 = bk ∗S;
3 plot (x2)

Question 9: What do you get for x2[n] using b[k] = {1, −1/2, 1/3, −1/4, 1/5, −1/6, 1/7, −1/8, 1/9, 0}? (You
may want to try to derive these results from first principles.)

So far we have been using sine waves as our basis functions. Let us now try using cosine signals. First, create
a cosgen function and use it to generate a 10x128 matrix C that contains 10 harmonics of cosine waveforms.
Now, use the weighting vector a[k] = {1, 0, −1/3, 0, 1/5, 0, −1/7, 0, 1/9, 0}, to compute x3=ak*C and thus
plot the result of:

x3[n] =

10∑
k=1

a[k] cos(kΩn).

Question 10: How does x3[n] differ from x2[n] obtained earlier using sine waves? What general conclusions
on the even and odd symmetry of the signal can you draw?

Question 11: Prove that x[n] = a[0] +
∑∞
k=1 a[k] cos( 2π

N kn) +
∑∞
k=1 b[k] sin( 2π

N kn) is equivalent to x[n] =∑∞
k=−∞A[k]ej

2π
N kn. How can the coefficients A[k] be determined?

GTA Tip

Recall that sin(θ) = − 1
2je

jθ + 1
2je
−jθ and cos(θ) = 1

2e
jθ + 1

2e
−jθ.

We are now starting to see a really important property of periodic signals using Fourier series analysis. Fourier
series analysis states that any periodic function can be constructed from a weighted sum of harmonically related
sinusoids. This leads us to the definition of the Discrete Fourier Series (DFS) for periodic signals:

DFS (Discrete Fourier Series):

Forward Transform: X[k] =

N−1∑
n=0

x[n]e−j
2π
N kn, k = 0,±1,±2, · · ·

Inverse Transform: x[n] =
1

N

N−1∑
k=0

X[k]ej
2π
N kn, n = 0,±1,±2, · · ·

You should now be able to see that it is possible to construct x[n] from a finite number of harmonics; the
frequencies being Ω = 2π

N k, where k = 0, 1, · · · , N − 1.

Question 12: Derive the DFS of the periodic sequence x[n] = {· · · , 0
↑
, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, · · · }, where

N = 4 and the arrow denotes the 0th sample. What do you notice about the periodicity of X[k]?
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It should be evident that X[k] is itself a (complex-valued) periodic sequence with a fundamental period equal
to N , that is,

X[k +N ] = X[k],

where k is the harmonic or frequency bin number and n is the sample number.

To recap, to perform the frequency analysis of a periodic signal, we take one cycle and perform the DFS. So
what about non-periodic signals? If an infinitely long continuous-time domain signal is sampled, the frequency
domain representation is given by what is called the Discrete-Time Fourier Transform (DTFT). This is defined
as X(ejΩ) =

∑∞
−∞ x[n]e−jΩn and gives a continuous frequency domain representation. It is not possible in

practice, however, to process an infinite number of samples. Realistically, therefore, to be able to perform a
frequency analysis, we only take a finite number of samples N and look at the frequency domain representation
of these N samples. This leads to what is called the Discrete Fourier Transform (DFT). The DFT is a version
of the DTFT in which the frequency domain variable Ω is sampled at frequencies 2πk/N , k = 0, 1, · · ·N − 1.

What is surprising is the equation for the Discrete Fourier Series (DFS) and the Discrete Fourier Transform
(DFT) are actually the same but the reasoning behind the periodicity is not. The periodicity of the DFS is the
natural extension due to the time sequence being periodic. Whereas the periodicity of the DFT is a forced by
product of sampling the frequency spectrum X(ejΩ) (recall Exercise 2 and the effects of sampling). The full
mathematical definition of the DFT is as follows:

DFT (Discrete Fourier Transform): x[n]→ X[k]

Forward Transform: X[k] =

N−1∑
n=0

x[n]e−j
2π
N kn, k = 0, 1, 2, · · ·N − 1

Inverse Transform: x[n] =
1

N

N−1∑
k=0

X[k]ej
2π
N kn, n = 0, 1, 2, · · ·N − 1

Question 13: Can the Fourier transform modify the energy of a signal?

Question 14: When applying Fourier analysis to a signal, under which circumstances should a DFS be employed
and under which circumstances should a DFT be employed?

In MATLAB we use the fft function to calculate the DFT. The Fast Fourier Transform (FFT) is just a fast
algorithm that is used to calculate the DFT.

Now let us find the DFT spectrum of the sine wave produced with sinegen:

1 x = sinegen (8000 ,1000 ,8) ;
2 A = fft (x)

Question 15: Explain the numerical result in A. Make sure that you know the significance of each number in
the MATLAB output. Evaluate the DFT of a cosine signal. Is it what you would expect?

Question 16: What is the frequency resolution of a 256-point DFT when the sampling frequency is 1000 Hz?

GTA Tip

• The first sample of the DFT represents the DC component (0 Hz).

• The last sample of the DFT represents the sampling frequency minus the frequency resolution (F −∆F ).
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Instead of working with real and imaginary numbers, it is often more convenient to work with the magnitude
and phase of the frequency components, as defined by:

1 mag = sqrt (A .∗ conj (A));
2 phase = atan2 ( imag (A), real (A));

If you precede the ‘*’ or ‘/’ operators with a period ‘.’, MATLAB will perform an element-by-element
multiplication or division, respectively, of the two vectors instead of the normal matrix operation. conj(A)
returns the conjugate of each elements in A.

Write a function plotspec(A) which plots the magnitude and phase spectra of A (the magnitude spectrum
should be plotted as a stem graph). This function will be useful later.

Now, let’s create a pulse signal containing 8 samples of ones and 8 samples of zeros. Obtain its magnitude
spectrum and check that it is what you expect.

1 x = [ ones (1 ,8) , zeros (1 ,8) ];
2 A = fft (x)
3 plotspec (A)

Gradually reduce the width of the pulse until it becomes a unit impulse function, i.e. contains only a single one
and 15 zeros. Note how the spectrum changes.

Question 17: What do these plots tell us about the frequency components that make up a unit impulse
function?

Next delay this unit impulse function by 1 sample and find its spectrum again. Examine the real and imaginary
spectra.

Question 18: What happens to the spectrum when the unit impulse function is delayed? What do you expect
to get if you delay the impulse by 2 samples instead of 1? Investigate the phase of the delay (you might find
the unwrap function in MATLAB useful).

To test how much you have understood so far, you are given a real electrocardiogram (EGC) signal. The signal
contains 500 data samples and was sampled at 200 Hz. Our aim is to detect the heart rate of the patient from
which this ECG was taken.

First, download the file, ecg.mat, from blackboard into your working directory. Then load the data into a
vector using the MATLAB command:

1 load (" ecg . mat ");

First plot the ECG signal:

1 fsamp = 200;
2 Nsamp = length ( ecg );
3 Tsamp = 1/ fsamp ;
4 t = 0: Tsamp :( Nsamp−1) ∗ Tsamp ;
5

6 plot (t, ecg )
7 title (’ECG ’)
8 xlabel (’Time [s]’)
9 ylabel (’ Amplitude ’)
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Now let’s remove the DC component from the ECG signal using the frequency domain:

1 ECG = fft ( ecg );
2 ECG (1) = 0; % remove the 0 Hz component
3 e c g n o d c = ifft ( ECG );

Question 19: Can you think of a way of removing the DC component in the time domain without using the
DFT? Why not try to implement this time domain approach in MATLAB.

Let’s plot the ECG signal with no DC offset:

1 plot (t, e c g n o d c )
2 title (’ECG (DC offset removed )’)
3 xlabel (’Time [s]’)
4 ylabel (’ Amplitude ’)

Question 20: Plot the spectra of the ecg no dc signal. Make sure that you can interpret the frequency axis.
Deduce the the person’s heart rate in beats per minute. Does this result make sense when compared to your
plot of ecg no dc in the time domain?

GTA Tip

The ECG signal is quasi-periodic and at each period the heart cycles through both a systole and diastole phase.
In the frequency domain you will not just see the heart rate, but also a series of successively higher frequencies
called ‘harmonic frequencies’. Therefore, to calculate the frequency of the heart you first need to detect the
multiple peaks generated in the frequency domain which will all be multiples of the fundamental frequency, F0

(i.e. 1st peak = F0; 2nd peak = 2× F0; 3rd peak = 3× F0; and so on).
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Exercise 4 - The effects of using windows

Objectives

• To understand why spectral leakage occurs due to discontinuities in the time domain

• To see why windows are helpful at reducing spectral leakage

x[n]

(a) x[n]: sampled signal (b) x[n]× w[n]: Windowed Signal

Causes discontinuities

(c) Repeated to calculate DFT

Figure 4: Rectangular Window

So far we have only dealt with sine waves with an integer number of cycles. Generate a sine wave with an
incomplete last cycle using:

1 x = sinegen (20000 ,1000 ,128) ;

Obtain its magnitude spectrum. Instead of obtaining just two spikes for the positive and negative frequencies,
you will see many more components around the main signal component. Since we are not using an integer number
of cycles, we introduce a discontinuity after the last sample as shown in Fig. 4. This is equivalent to multiplying
a continuous sine wave with a rectangular window as shown in Fig. 4. It is this discontinuity that generates the
extra frequency components. To reduce this effect, we need to reduce or remove the discontinuities. Choosing
a window function that gradually goes to zero at both ends can do this. Four common window functions are
defined mathematically as:

Rectangular:

w[n] = δ−M2 ≤n≤
M
2

Main lobe width: 4π/(M + 1)
Relative sidelobe level: 13.0 dB
Never use

0
Rectangular

0 1 2 3
Ω (rads/sample)

0

−50

−100

|W
|(

d
B

)

0.37

-13.0 dB

Hanning:

w[n] = 0.5 + 0.5 cos 2πn
M+1

Main lobe width: 8π/(M + 1)
Relative sidelobe level: 31.5 dB
Rapid sidelobe decay

0
Hanning

0 1 2 3
Ω (rads/sample)

0

−50

−100

|W
|(

d
B

)

0.79

-31.5 dB

Hamming:

w[n] = 0.54 + 0.46 cos 2πn
M+1

Main lobe width: 8π/(M + 1)
Relative sidelobe level: 40.0 dB
Best peak sidelobe

0
Hamming

0 1 2 3
Ω (rads/sample)

0

−50

−100

|W
|(

d
B

)

0.87

-40.0 dB
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Blackman-Harris (3-term):

w[n] = 0.42 + 0.5 cos 2πn
M+1 + 0.08 cos 4πn

M+1

Main lobe width: 12π/(M + 1)
Relative sidelobe level: 58.0 dB
Best peak sidelobe

0
Blackman-Harris

0 1 2 3
Ω (rads/sample)

0

−50

−100

|W
|(

d
B

)

1.19
-58.0 dB

Let us now see how you would plot one of these windows in MATLAB:

1 y = hanning (128) ;
2 plot (y);
3 plotspec ( fft (y));

Now try plotting the result of your sine wave multiplied by this Hanning window function. Compare the
magnitude spectrum of the sine wave without windowing to those weighted by the Hanning window function.

Now try to repeat this for the Blackman-Harris window using the blackman function in MATLAB.

Question 21: We have now seen the effect of windowing by two different windows. Compare the signals with
and without windowing and discuss the differences. State a reason why the Hanning window would be chosen in
preference to the Blackman-Harris window. State a reason why the Blackman-Harris window would be chosen
in preference to the Hanning window.

Question 22: Recall that multiplication in the time domain is equivalent to convolution in the frequency
domain. Try to use this fact to explain the effects of windowing.

Question 23: Is it ever a bad idea to window a signal before taking the DFT? (Hint: Try windowing the first
sine wave we generated in Exercise 1)

To test how much you have understood so far, you are given an unknown signal, unknown.mat (which can
be downloaded from blackboard into your working directory). The file contains 1048 data samples. It is also
known that the signal was sampled at 1 kHz and contains one or more significant sine waves.

You can load the data into a vector using the MATLAB command:

1 load (" unknown . mat ")

Question 24: Take at least two different 256-sample segments from this data, starting at different chosen
starting sample numbers, and compare their spectra. Are they essentially the same? Make sure that you can
interpret the frequency axis. Deduce the frequency and magnitude of its constituent sine waves.

Now let’s see how windowing is used in a real world example. Start by downloading the ‘.wav’ file piano.wav
from blackboard into your working directory.

Why not listen to the piano.wav file. It is a 6 second long recording that contains 3 notes played at 2 second
intervals on a grand piano. (The first note is played at 0 seconds then the second note is played starting at
2 seconds and the third note is played starting at 4 seconds.)

We are now going to do the job of an electronic tuning device by using windowing and the frequency domain
to workout which notes are being played.
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First, we need to read this ‘.wav’ file into MATLAB in the following way:

1 [data , fsamp ] = audioread (’piano . wav ’);
2 Tsamp = 1/ fsamp ;

Now let’s set up our windowing parameters to investigate the second note that was played 2 seconds into the
recording:

1 win loc sec = 2.5 % 0.5 seconds into second note
2 win size sec = 0.200 % 200 ms frame
3 win loc = win loc sec / Tsamp ;
4 win size = win size sec / Tsamp ;

We can now plot this frame in both the time and frequency domain without using a window:

1 x = data ( win loc : win loc + win size −1);
2

3 Nsamp = length (x);
4 t = 0: Tsamp :( Nsamp−1) ∗ Tsamp ;
5 plot (t, x);
6

7 X = fft (x);
8

9 f step = (0:( fsamp / nsamp ):( fsamp−(fsamp / nsamp )));
10 plot ( f step , abs (X)); % plot spectra
11 xlim ([0 1000]) % limit spectra x−axis between [0 , 1000] Hz

Question 25: Now try using a window to reduce the spectral leakage and try to find the frequency and the
corresponding musical note value that is being played. For the musical notes, use scientific pitch notation as
tabulated here: https://en.wikipedia.org/wiki/Piano key frequencies.

GTA Tip

Recall what we learned about harmonics from the ECG example in Exercise 3.

Question 26: See if you can work out the other 2 notes that were played.

Hint: use winlocsec = 0.5 (0.5 seconds into the 1st note), winlocsec = 2.5 (0.5 seconds into the 2nd
note) and winlocsec = 4.5 (0.5 seconds into the 3rd note)
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Exercise 5 - Filtering in the Frequency Domain

Objectives

• To be able to filter a signal in the frequency domain

What is a Digital Filter?

The purpose of a digital filter, as for any other filter, is to enhance the wanted aspects of a signal, while
suppressing the unwanted aspects. This is referred to as frequency selectivity. In this lab, we will restrict
ourselves to filters that are linear and time-invariant. A filter is linear if its response to the sum of the two
inputs is merely the sum of its responses of the two signals taken separately, while a time-invariant filter is one
whose characteristics do not alter with time. We make these two restrictions because they enormously simplify
the mathematics involved. Linear time-invariant filters may also be made from analogue components such as
resistors, capacitors, inductors and op-amps.

An obvious way to filter a signal is to remove the unwanted spectral components in the frequency domain. The
steps are:

1. Take the DFT of the signal to convert it into its frequency domain equivalent.

2. Set unwanted components in the spectrum to zero.

3. Take the inverse DFT of the resulting spectrum.

Let’s filter part of a song, track 1.wav, by removing all components above 300 Hz. Compare the filtered
waveform and audio with the original signal. Start by downloading the track 1.wav file from blackboard into
your working directory and run the code below:

1 [x, fsamp ] = audioread (’ track 1 . wav ’);
2 Tsamp = 1/ fsamp ;
3 Nsamp = length (x);
4

5 X = fft (x);
6

7 cutoff = 300;
8 n = round ( cutoff / fsamp ∗ Nsamp ); % calculate the frequency index
9

10 f step = (0:( fsamp / nsamp ):( fsamp−(fsamp / nsamp )));
11 plot ( f step , abs (X))
12 title (’DFT ’)
13 xlabel (’ Frequency [Hz]’)
14 ylabel (’ Amplitude ’)
15

16 X(n +1: end−n +1) = 0; %+1 due to MATLAB indexing starts from 1
17 plot ( f step , abs (X))
18 title (’DFT ( after filtering )’)
19 xlabel (’ Frequency [Hz]’)
20 ylabel (’ Amplitude ’)
21

22 y = ifft (X);
23

24 audiowrite (’ track 1 lowpass . wav ’, y, fsamp );

Question 27: Now try to modify the code above to create a high-pass filter by removing all components below
300 Hz. Save the result as track 1 highpass.wav and listen for the differences.
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GTA Tip

Note that the filtered waveform should still be real. If your result is not real it is because you have destroyed
the conjugate symmetric property in the frequency domain that makes the signal real in the time domain.

Question 28: What are the disadvantages of filtering in the frequency domain?

It is useful to know that if a signal x[n] has a special property in the time domain then there will be a
corresponding property in the frequency domain, X(ejΩ) and X[k] (and vice versa).

One Domain Other Domain

Discrete Periodic

Symmetric Symmetric

Antisymmetric Antisymmetric

Real Conjugate Symmetric

Imaginary Conjugate Antisymmetric

Real & Symmetric Real & Symmetric

Real & Antisymmetric Imaginary & Antisymmetric

Symmetric: x[n] = x[−n]

X(ejΩ) = X(e−jΩ)

X[k] = X[(−k)modN ] = X[N − k] for k > 0

Conjugate Symmetric: x[n] = x∗[−n]

Conjugate Antisymmetric: x[n] = −x∗[−n]
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Exercise 6 - Impulse response and convolution

Objectives

• To introduce linear convolution for discrete-time signals

• To show that circular convolution in the time domain is equivalent to multiplication in the frequency
domain for discrete-time signals

0

δ[n]

n

Digital
Filter

0

h[n]

n

Figure 5: Impulse response of a filter

Suppose we apply a unit impulse function, δ[n], as an input into a filter. The output denotes the impulse
response of the digital filter, h[n], shown in Fig. 5. Since the discrete-time system is time-invariant, the filter
response to δ[n− k] is h[n− k].

In general, any input signal, x[n], can be decomposed into a sum of impulses with different delays
{δ[n], δ[n− 1], · · · , δ[n−N ]}. Due to linearity, the response of the digital filter will be the sum of the outputs
i.e. y[n] = h[n] + h[n− 1] + · · · + h[n−N ]. Note that the impulses should be scaled by the signal value at
the respective time samples i.e. {x[0]δ[n], x[1]δ[n− 1], · · · , x[N ]δ[n−N ]}. Consequently, the filter output is,
y[n] = x[0]h[n] + x[1]h[n− 1] + · · ·+ x[N ]h[n−N ] which is defined as linear convolution.

Decompose x[n] into δ[n− k] + δ[n− (k + 1)] + δ[n− (k + 2)].

k

x[n]

n
Digital
Filter

x[n]

h[n]

y[n]

k

Contribution

from δ[n− k]

+

k + 1

Contribution

from δ[n− (k + 1)]

+

k + 2

Contribution

from δ[n− (k + 2)]

=

k

y[n]

Figure 6: Linear convolution in time domain
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Definition:

Linear Convolution: y[n] = x[n] ∗ h[n]
∆
=

∞∑
k=−∞

x[k]h[n− k]

If we substitute r for n− k this becomes:

y[n] =

∞∑
r=−∞

h[r]x[n− r]

Thus, for any linear time-invariant (LTI) filter, the output values consist of the sum of the past input values,
weighted by the elements of the impulse response h[n]. This has been shown in Fig. 6.

Question 29: What information is needed in order to compute the output of a discrete-time LTI system?

Question 30: We now know that h[n] is the impulse response of a filter. How can you obtain its frequency
response?

You can perform linear convolution in MATLAB using the conv function. So you can replicate the result of
Fig. 6 using:

1 x = [0 1 1 1 ];
2 h = [0.6 0.8 1 0.3];
3 y = conv (x, h);
4 stem (y);

We have already said that convolution in the continuous-time domain is equivalent to multiplication in the
frequency domain. This has been shown in Fig. 7, therefore, calculate the result of ‘y’ using only the fft and
ifft functions.

0

|X[k]|

n
Digital
Filter

X[k]

H[k]

Y [k]

0

|X[k]|

×

0

|H[k]|

=

0

|Y [k]|

Figure 7: Circular convolution in frequency domain

Question 31: Explain why y[n] computed using the two methods, linear convolution and the DFT, are different.
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As explained earlier sampling the spectrum makes the time-domain periodic. This means that multiplication in
the frequency domain is no longer linear convolution in the time domain. In fact, multiplication in the frequency
domain for discrete signals is equivalent to a different type of convolution, called Circular Convolution and
is defined as

Definition:

Circular Convolution: y[n] = x[n] ~N h[n]
∆
=

N−1∑
k=0

x[k]h[(n− k)mod N ].

Question 32: Knowing this fact can you think of anyway to make circular convolution the same as the linear
convolution result? If so can you now calculate the values of ‘y’ using only the fft and ifft functions
correctly?

GTA Tip

Google is your friend (https://uk.mathworks.com/help/signal/ug/linear-and-circular-convolution.html).

Question 33: What differences are there, if any, between linear convolution of a periodic signal and circular
convolution?
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Exercise 7 - Finite Impulse Response (FIR) filters

Objectives

• To introduce Finite Impulse Response (FIR) filters

The filter impulse response is the output when the input is δ[n]. Recall that an impulse signal contains equal
power in all frequency components, i.e. its magnitude spectrum is a constant at all frequencies (flat). Therefore,
the frequency response of a filter is simply the discrete Fourier transform of the filter’s impulse response.

We have already tried one method of filtering in Exercise 5 which involved setting all unwanted frequency
components to zero. However this is not the only, nor most direct, way to filter a signal. In this exercise we are
going to look at a different and often better approach using Finite Impulse Response (FIR) filters.

Definition:

Finite Impulse Response (FIR) Filter: y[n] =

M∑
k=0

b[k]x[n− k]

The impulse response of FIR filters are defined as b[n] with a length of M + 1. Let us assume that the impulse
response of the filter is a sequence of 4 ones.

Question 34: Describe the frequency response, B(ejΩ), of this filter, b[n] = {1, 1, 1, 1}, using plotspec.
What do you notice about the phase?

This filter keeps the low frequency components intact and reduces the high frequency components. It is therefore
known as a low-pass filter.

Question 35: Suppose the input signal to the filter is x[n], show that this filter produces the output y[n] =
x[n] + x[n− 1] + x[n− 2] + x[n− 3].

Now let’s create a moving average filter and use it on some real data, namely the number of daily Coronavirus
(COVID-19) cases in the UK between 2020-01-30 and 2020-06-29. Start by downloading coronavirus.mat
from blackboard and plotting the data in MATLAB:

1 load (" coronavirus . mat ")
2

3 t = datetime (2020 ,01 ,30) + caldays (0: length ( data )−1);
4 stem (t, data )
5 grid
6 title (’UK Coronavirus Cases ’)
7 xlabel (’Time [ days ]’)
8 ylabel (’ Amplitude [no. cases ]’)

Implement a 4 day moving average filter (Hint: b[n] = 1
4{1, 1, 1, 1}) which can be done using the conv(x,

b) function to perform a convolution between the signal, x[n], and b[n].

Question 36: Compare the waveform before and after filtering. Do you see what you would have expected?
Now modify b[n] to implement a 7 day moving average filter.

Now let’s try and create some more impressive FIR filters using MATLAB’s Filter Designer. First run the code
below where the FIR coefficients have already been calculated for you using MATLAB’s Filter Designer and
stored in aircrew coef.mat. The code applies a band-stop filter to the audio file aircrew.wav (download
both ‘aircrew coef.mat’ and ‘aircrew.wav’ from Blackboard).
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1 [x, fsamp ] = audioread (’ aircrew . wav ’);
2 Tsamp = 1/ fsamp ;
3 Nsamp = length (x);
4 t = 0: Tsamp :( Nsamp−1) ∗ Tsamp ;
5

6 load (’ aircrew coef . mat ’)
7 y bs = conv (x, b f i r b s f );
8

9 audiowrite (’ aircrew fir bsf . wav ’, y bs , fsamp );

Now try to calculate these coefficients yourself using MATLAB’s Filter Designer. To start type and run
filterDesigner on the MATLAB command prompt: >> filterDesigner. A GUI should appear (see
Fig. 8) displaying a default filter.

Figure 8: Bandstop Filter Design

Change the default settings to those shown in Fig. 8 and then click the Design Filter button. Then click File
and select Export... from the drop-down list. A export GUI should appear. Select Workplace for ‘Export
To’ and Coefficients for ‘Export As’. Choose a sensible variable name (‘Numerator’), e.g. my b fir bsf, to
store the coefficients. When you are happy with the selected settings click Export.

If you check your MATLAB ‘Workspace’ on the right-hand side of the MATLAB window you should now see your
new variable storing the coefficients of the band-stop filter that you have just designed. To save these coefficients
as a ‘.mat’ file so they are not lost when you close MATLAB just right click on the variable, my b fir bsf,
in the ‘Workspace’ and select Save As from the drop-down list. Regenerate ‘aircrew fir bsf.wav’ using
the coefficients you have just exported. You should hear the same result.

You have probably notice that this recording also contains a lot of background noise at high frequencies. Let
us now design a low-pass filter using Fig. 9 to create the coefficients, b fir lpf, for the low-pass filter.
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Figure 9: Lowpass Filter Design

1 y lp = conv ( y bs , b f i r l p f );
2 audiowrite (’ aircrew fir bsf lpf . wav ’, y lp , fsamp );

Let’s compare this result with the filtering approach used in Exercise 5. To save time the complete code to
implement this approach has been given to you below:

1 [x, fsamp ] = audioread (’ aircrew . wav ’);
2 Tsamp = 1/ fsamp ;
3 Nsamp = length (x);
4 t = 0: Tsamp :( Nsamp−1) ∗ Tsamp ;
5

6 X = fft (x);
7

8 cutoff = 2200;
9 band start = 1200;

10 band end = 1500;
11 n = round ( cutoff / fsamp ∗ Nsamp ); % calculate the frequency index
12 n start = round ( band start / fsamp ∗ Nsamp );
13 n end = round ( band end / fsamp ∗ Nsamp );
14

15 X(n +1: end−n +1) = 0; % low−pass
16 X( n start +1: n end +1) = 0; % band−stop (1)
17 X(end−n end +1: end−n start +1) = 0; % band−stop (2)
18

19 y = ifft (X);
20

21 audiowrite (’ aircrew freq bsf lpf . wav ’, y, fsamp );
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To truly understand the difference between these two approaches (Exercise 5 vs FIR) we need to examine their
frequency responses which have been given to you in Fig. 10.
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Figure 10: Performance Comparison: FIR filtering vs Exercise 5 approach

Question 37: The performance using the approach from Exercise 5 is worse but can you explain why? Are
you able to hear the difference between ‘aircrew fir bsf lpf.wav’ and ‘aircrew freq bsf lpf.wav’?

To understand how Fig. 10(b) is calculated the code used to produce it is given below:

1 fsamp = 44100;
2 Nsamp = 100000;
3

4 cutoff = 2200;
5 n = round ( cutoff / fsamp ∗ Nsamp );
6

7 H = ones (1 , Nsamp ); % all−pass filter in the frequency domain
8 H(n +1: end−n +1) = 0; % low−pass ( sets unwanted frequencies to 0)
9 h = ifft (H); % impulse response of the filter H

10

11 limit = 4500; % only view frequency response between [0 , 4500] Hz
12 w = linspace (0 , limit , 1024) ;
13 freqz (h, 1, w); % plot frequency response
14 freqz (h, 1, w, fsamp ); % limits range of y−axis
15 sgtitle (’Freq Low−Pass Filter ’)

Question 38: In Fig. 10(b) the frequency response is perfect at the sample points but not between them. Can
you explain why?
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Exercise 8 - Infinite Impulse Response (IIR) filters

Objectives

• To introduce Infinite Impulse Response (IIR) filters

The filter described in the last exercise belongs to a class known as Finite Impulse Response (FIR) filters.
It has the property that all output samples are dependent on input samples alone. For an impulse response
that contains many non-zero terms, the amount of computation required to implement the filter may become
prohibitively large if the output sequence, y[n], is computed directly as a weighted sum of the past input values.
Instead, y[n] may be computed using a recursive form, as a sum of present and past input values and past
output values.

In this exercise we will explore a new type of filter which has an impulse response of infinite length, therefore it
is known as an Infinite Impulse Response (IIR) filter. It is also called a recursive filter because old outputs
are being fed back to calculate the new output. They are described by the following equation:

Definition:

Infinite Impulse Response (IIR) Filter: y[n] =

M∑
k=0

b[k]x[n− k]−
N∑
k=1

a[k]y[n− k]

Note that MATLAB provides a function called filter to perform general FIR and IIR filtering.

1 y = filter (b, a, x)

Where b = {b[0], b[1], · · · , b[1−M ]} and a = {1, a[1], a[2], · · · , a[N − 1]}. Note that the FIR filter in Exercise
8 can be implemented using filter where a = {1}.

Figure 11: Bandstop Filter Design
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Now let’s try to filter aircrew.wav using IIR filters. To start with lets run filterDesigner and use the
specification shown in Fig. 11. For IIR filters before you export the coefficients you will want to convert the
filter structure from second-order sections to a single section. To do this click Edit and select Convert to
Single Section from the drop-down list. Check that ‘Source: Converted’ is now displayed on the left-hand
side.

We can now export the coefficients in the same way as in Exercise 7 (see Fig. 12)

Figure 12: Export

Next use the filterDesigner and Fig. 13 to generate coefficients for the low-pass filter which is required to
remove the high frequency background noise from the signal.

Figure 13: Lowpass Filter Design

Let’s now listen to the effect of the two IIR filters that we have created. To do this copy and run the code
snippet below. (You may need to change a iir bsf, b iir bsf, a iir lpf and b iir lpf if you have
named the coefficients that you just exported differently.)
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1 [x, fsamp ] = audioread (’ aircrew . wav ’);
2 Tsamp = 1/ fsamp ;
3 Nsamp = length (x);
4 t = 0: Tsamp :( Nsamp−1) ∗ Tsamp ;
5

6 y bs = filter ( b iir bsf , a iir bsf , x);
7 y lp = filter ( b iir lpf , a iir lpf , y bs );
8

9 audiowrite (’ aircrew iir bsf . wav ’, y bs , fsamp );
10 audiowrite (’ aircrew iir bsf lpf . wav ’, y lp , fsamp );

Question 39: Compare and contrast the frequency response of the FIR and IIR low pass filters you have just
created. Does the frequency response make sense of what you hear when you listen to the filtered signal?

A simple way to compute and plot the frequency response of the IIR filter you have just created is:

1 fsamp = 44100;
2

3 limit = 4500; % only view frequency response between [0 , 4500] Hz
4 w = linspace (0 , limit , 1024) ;
5 freqz ( b iir lpf , a iir lpf , w, fsamp ); % plot frequency response
6 ylim ([−100 10]) % limits range of y−axis
7 sgtitle (’IIR Low−Pass Filter ’)

Question 40: Derive the impulse response of: y[n] = 0.5x[n] + 0.5y[n− 1]?

Question 41: Why does an IIR filter have to be implemented recursively (i.e. does it absolutely need to use
past output values)?

Question 42: Compare the advantages and disadvantages of FIR and IIR filters (Hint: look at the number of
coefficients required to implement both types of filters, e.g. b fir bsf, a iir bsf and b iir bsf).
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