Imperial College London

MODULE 5 \& 6 CLASS

Aidan Hogg \& Patrick Naylor - Autumn Term 2020
ELEC50013: Signal and Systems
Department of Electrical and Electronic Engineering

PEER INSTRUCTION

Method:

1: Conceptual question posed - students individually come up initial answer (5 mins)

2: Explanation/discussion of correct answer (5 mins)

QUESTION 1:

Suppose we know that if the input to an LTI system is:

$$
x(t)=e^{-3 t} u(t)
$$

then the output is

$$
y(t)=\left[e^{-t}-e^{-2 t}\right] u(t)
$$

Which of these statements would be true about this LTI system?
(multiple options allowed)
A: The LTI system is "BIBO stable"
B: The impulse response, $h(t)$, is absolutely integrable
C : The region of absolute convergence of the transfer function, $H(s)$, includes the $j \omega$-axis

Suppose we know that if the input to an LTI system is:

$$
x(t)=e^{-3 t} u(t)
$$

then the output is

$$
y(t)=\left[e^{-t}-e^{-2 t}\right] u(t)
$$

Which of these statements would be true about this LTI system?
(multiple options allowed)
A: The LTI system is "BIBO stable"
B: The impulse response, $h(t)$, is absolutely integrable
C: The region of absolute convergence of the transfer function, $H(s)$, includes the $j \omega$-axis

EXPLANATION

Taking Laplace transforms of $x(t)$ and $y(t)$, we get

$$
\begin{gathered}
X(s)=\frac{1}{s+3}, \quad \operatorname{ROC}: \mathfrak{R}(s)>-3 \\
Y(s)=\frac{1}{s+1}-\frac{1}{s+2}=\frac{1}{(s+1)(s+2)}, \quad \mathrm{ROC}: \mathfrak{R}(s)>-1
\end{gathered}
$$

Therefore

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{s+3}{(s+1)(s+2)}=\frac{s+3}{s^{2}+3 s+2}, \quad \text { ROC: } \mathfrak{R}(s)>-1
$$

We can now conclude that the system is stable (so all the statements are true) and we can even specify the system's differential equation:

$$
\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=\frac{d x(t)}{d t}+3 x(t)
$$

QUESTION 2:

Consider the following pole zero plot in the s-plane

What is the frequency response of this system?

A

B

C

Consider the following pole zero plot in the s-plane

What is the frequency response of this system?

A

B

C

EXPLANATION

Frequency responses:

A

B

C

QUESTION 3:

Consider the following system:

$$
y[n]=2 x[n]-3 x[n-1]+x[n-2]
$$

Where are the poles and zeros located?

$$
\begin{array}{ll}
\text { A: Zeros at } z=\{2,0\} \text { and }\{1,0\} & \text { Poles at } z=\{0,0\} \times 2 \\
\text { B: Zeros at } z=\{2,0\} \text { and }\{1,0\} & \text { Pole at } z=\{0,0\} \\
\text { C: Zeros at } z=\{1 / 2,0\} \text { and }\{1,0\} & \text { Poles at } z=\{0,0\} \times 2
\end{array}
$$

Consider the following system:

$$
y[n]=2 x[n]-3 x[n-1]+x[n-2]
$$

Where are the poles and zeros located?
A: Zeros at $z=\{2,0\}$ and $\{1,0\} \quad$ Poles at $z=\{0,0\} \times 2$
B: Zeros at $z=\{2,0\}$ and $\{1,0\} \quad$ Pole at $z=\{0,0\}$
C: Zeros at $z=\{1 / 2,0\}$ and $\{1,0\} \quad$ Poles at $z=\{0,0\} \times 2$

EXPLANATION

Solution

$$
\begin{aligned}
y[n] & =2 x[n]-3 x[n-1]+x[n-2] \\
Y(z) & =2 X(z)-3 z^{-1} X(z)+z^{-2} X(z) \\
Y(z) & =\left[z^{-2}-3 z^{-1}+2\right] X(z) \\
Y(z) & =\left[\left(z^{-1}-2\right)\left(z^{-1}-1\right)\right] X(z)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \text { Zeros at } z=\left\{\frac{1}{2}, 0\right\} \text { and }\{1,0\} \\
& \text { Poles at } z=\{0,0\} \text { and }\{0,0\}
\end{aligned}
$$

QUESTION 4:

(i)

(x)

(ii)

(y)

(iii)

(z)

What is the correct mapping between these signals and their ROCs?
A: (i) : (x),
(ii) : (y),
(iii) : (z)
B: (i) : (y),
(ii) : (x),
(iii) : (z)
C: (i): (z),
(ii) : (x),
(iii) : (y)

(i)

(x)

(ii)

(y)

(iii)

(z)

What is the correct mapping between these signals and their ROCs?
A: (i) : (x),
(ii) : (y),
(iii) : (z)
B: (i) : (y),
(ii) : (x),
(iii) : (z)
C: (i): (z),
(ii) : (x),
(iii) : (y)

EXPLANATION

If a right-sided impulse response is also causal what does that imply?
If a left-sided impulse response is also anti-causal what does that imply?

QUESTION 5:

Consider the following systems:

$$
\begin{gathered}
H(z)=\frac{0.75}{1+0.5 z^{-1}}+\frac{1.25}{1-1.5 z^{-1}} \quad \text { ROC: } 1.5<|z| \leq \infty \\
y[n]=0.5 x[n]+0.5 y[n-1] \\
h[n]=-1.75^{n} u[-n-1]
\end{gathered}
$$

What facts are true about all these systems? (multiple options allowed)
A: They are all causal
B: They are all stable
C: They all have an infinite impulse response

Consider the following systems:

$$
\begin{gathered}
H(z)=\frac{0.75}{1+0.5 z^{-1}}+\frac{1.25}{1-1.5 z^{-1}} \quad \text { ROC: } 1.5<|z| \leq \infty \\
y[n]=0.5 x[n]+0.5 y[n-1] \\
h[n]=-1.75^{n} u[-n-1]
\end{gathered}
$$

What facts are true about all these systems? (multiple options allowed)
A: They are all causal
B: They are all stable
C: They all have an infinite impulse response

EXPLANATION

Consider the following systems:

Statements True

$$
\begin{array}{cc}
H(z)=\frac{0.75}{1+0.5 z^{-1}}+\frac{1.25}{1-1.5 z^{-1}} \quad \text { ROC: } 1.5<|z| \leq \infty & \text { A,C } \\
y[n]=0.5 x[n]+0.5 y[n-1] & \text { A,B,C } \\
h[n]=-1.75^{n} u[-n-1] & \text { B,C }
\end{array}
$$

What facts are true about all these systems? (multiple options allowed)
A: They are all causal
B: They are all stable
C: They all have an infinite impulse response

