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PEER INSTRUCTION

Method:

1: Conceptual question posed - students individually come up
initial answer (5 mins)

2: Explanation/discussion of correct answer (5 mins)



QUESTION 1:

A continuous-time LTI system is described by the differential
equation:

d*y(t) | .dy(t) _
ot 6= 8y (1) = 2a()

By using Fourier transforms and partial fraction expansion, find the
impulse response h(t)?

e 2tu(t) + e Hu(t)
B e’2tu(t) e Hu(t)

b etu(t) — e*u(t)
D: thu(t)— Au(t)



ANSWER [RELATED LECTURE EXERCISES: 8 (M4)]

A continuous-time LTI system is described by the differential
equation:

Pot) | gt |

B 462 1 sy(t) = 2a(t)

By using Fourier transforms and partial fraction expansion, find the
impulse response h(t)?



EXPLANATION

Differential equation:
dy(t)

d?y(t
dtg ) + 67 + Sy(t) = 2x(t)

Taking the Fourier transform of both sides:

. Y (jw) 2
H = =
(o) X(jw) —w?+6jw+38

Using partial fractions:

1 1
Cjw+2  jw4

H(jw)
Taking the inverse Fourier transform:

h(t) = e 2tu(t) — e *u(t)



QUESTION 2:

Consider a system with impulse response:

h(t) = e tu(t) + e tu(t) + etu(—t)

Where are the poles located and what is the ROC?
A: Poles at s = {—1,0}, {0.5,0}, {1,0},
ROC: —1 < R(s) < 0.5
B: Poles at s = {—0.5,0}, {—1,0}, {1,0},
ROC: —1 < R(s) < 1
C: Poles at s = {—0.5,0}, {-1,0}, {1,0},
ROC: —0.5 < R(s) < 1



ANSWER [RELATED LECTURE EXERCISES: 1 & 2 (M5)]

Consider a system with impulse response:

h(t) = e tu(t) + e tu(t) + etu(—t)

Where are the poles located and what is the ROC?
A: Poles at s = {—1,0}, {0.5,0}, {1,0},
ROC: —1 < R(s) < 0.5
B: Poles at s = {—0.5,0}, {—1,0}, {1,0},
ROC: —1 < R(s) < 1
C: Poles at s = {—0.5,0}, {—1,0}, {1,0},
ROC: —0.5 < M(s) < 1



EXPLANATION

h(t) = e t2u(t) + e tu(t) 4+ etu(—t)

0

/ x(t)e stdt
oS 0

/ s+05tdt+/ s+1)tdt+/ ef(sfl)tdt

0 0 —00

oo [ 0
1 —1 -1
_ (s+0.5)t —(s+1)t —(s—1)t
[s+0.5e ]0 +[5+1e ]0 +[s—1e ]OO

S B 1
Cs+05  s+1 s—1
ROC: RR(s) > —0.5 and R(s) > —1 and R(s) < 1
ROC: —0.5 <R(s) <1

Therefore, poles at s = {—1,0}, s = {—0.5,0} and s = {1,0}



QUESTION 3:

What is the correct mapping between these signals and their ROCs?

A (i): (x),  (Gi): (y), (ii): (2
B: (i): (2), (ii): (y), (iii): (x)
C(i): (y), (i): (@), (ii): (x)



ANSWER [RELATED LECTURE SLIDES: 15 - 17 (M5)]

What is the correct mapping between these signals and their ROCs?

A (i): (x),  (Gi): (y), (ii): (2
B: (i): (2), (ii): (y), (iii): (x)
C(i): (y), (i): (@, (ii): (x)
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Right-sided Left-sided Two-sided
Jw Jw Jw

For which of these signals does the Fourier transform exist?



QUESTION 4:

An absolutely integrable signal «(¢), i.e. its Fourier transform X (jw)
exists, is known to have a pole at s = 2.

Which of these statements are true? (multiple options allowed)

A: z(t) could be of finite duration
B: z(t) could be left sided

C z(t)

D: «z(t) could be two sided

could be right sided

-



ANSWER [RELATED LECTURE EXERCISES: 3 (M5)]

An absolutely integrable signal «(¢), i.e. its Fourier transform X (jw)
exists, is known to have a pole at s = 2.

Which of these statements are true? (multiple options allowed)

S 0w =

z(t) could be of finite duration
2(t) could be left sided
x(t) could be right sided

(t)

2(t) could be two sided



EXPLANATION

If z(t) is absolutely integrable and of finite duration, then the ROC is
the entire s-plane (the Laplace transform integral is finite, i.e. X(s)
exists, for any s).

A signal z(t) is absolutely integrable, i.e. its Fourier transform X (jw)
exists, if and only if the ROC of the corresponding Laplace transform
X (s) contains the imaginary axis R(s) = 0 or s = jw.

Jw Jw Jw

Left-sided Right-sided Two-sided



QUESTION 5:

Determine which of the following pole-zero diagrams could
represent Laplace transforms of even functions of time.

(multiple options allowed)

Jw  X(s) Jw  X,(s) Jw  Xy(s)
X
o o o
X X X—D D
1 1 —1
—1X




ANSWER

[RELATED LECTURE SLIDES: 13-17, 23 (M5)]

Determine which of the following pole-zero diagrams could
represent Laplace transforms of even functions of time.

(multiple options allowed)

Jw  X(s) Jw  X,(s) Jw  Xy(s)
X
o o
X X X—O S
1 1 —1
_1x
A B C



EXPLANATION

If z(¢) is an even function of time, then the corresponding Laplace
transform must be symmetric about the point s = 0.

X(s) = [: x(t)e st = [00 x(—t)e st = /_: z(t)est = X(—s)

o0

Thus the pole-zero diagram must also be symmetric about s = 0.

This means that X,(s) cannot correspond to an even function of
time.



EXPLANATION

For X (s) to be symmetric about s = 0, then the region of
convergence must be symmetric about the jw axis. Symmetry is not
possible for X, (s), which must be either right-sided or left-sided but

not both.

X, (s) has partial fraction expansions:

To get no finite zeros as in X;(s), A = —B. The corresponding time

function is:
zq(t) = A(e tu(t) + e'u(—t))

which is an even function of time for all values of A. Thus, only z,(t)
is an even function of ¢.



EXPLANATION

Note that symmetry of the pole-zero diagram is Jw Xy(s)

necessary but not sufficient for symmetry of the

corresponding time function, for example z4(t). VA R
—1 1

In this case z,(¢) has a similar partial fraction
expansion to xz (¢):

A n B
s+1 s—1

But to get a zero at s = 0, A = B. The corresponding time function is:

zy(t) = A(e tu(t) — etu(—t))

which is an odd function of time for all values of A.



