Imperial College
 London

MODULE 4 \& 5 CLASS

Aidan Hogg \& Patrick Naylor - Autumn Term 2020
ELEC50013: Signal and Systems
Department of Electrical and Electronic Engineering

PEER INSTRUCTION

Method:

1: Conceptual question posed - students individually come up initial answer (5 mins)

2: Explanation/discussion of correct answer (5 mins)

QUESTION 1:

A continuous-time LTI system is described by the differential equation:

$$
\frac{d^{2} y(t)}{d t^{2}}+6 \frac{d y(t)}{d t}+8 y(t)=2 x(t)
$$

By using Fourier transforms and partial fraction expansion, find the impulse response $h(t)$?

A: $e^{-2 t} u(t)+e^{-4 t} u(t)$
B: $e^{-2 t} u(t)-e^{-4 t} u(t)$
C: $e^{4 t} u(t)-e^{2 t} u(t)$
D: $e^{2 t} u(t)-e^{4 t} u(t)$

A continuous-time LTI system is described by the differential equation:

$$
\frac{d^{2} y(t)}{d t^{2}}+6 \frac{d y(t)}{d t}+8 y(t)=2 x(t)
$$

By using Fourier transforms and partial fraction expansion, find the impulse response $h(t)$?

A: $e^{-2 t} u(t)+e^{-4 t} u(t)$
B: $e^{-2 t} u(t)-e^{-4 t} u(t)$
C: $e^{4 t} u(t)-e^{2 t} u(t)$
D: $e^{2 t} u(t)-e^{4 t} u(t)$

EXPLANATION

Differential equation:

$$
\frac{d^{2} y(t)}{d t^{2}}+6 \frac{d y(t)}{d t}+8 y(t)=2 x(t)
$$

Taking the Fourier transform of both sides:

$$
H(j \omega)=\frac{Y(j \omega)}{X(j \omega)}=\frac{2}{-\omega^{2}+6 j \omega+8}
$$

Using partial fractions:

$$
H(j \omega)=\frac{1}{j \omega+2}-\frac{1}{j \omega+4}
$$

Taking the inverse Fourier transform:

$$
h(t)=e^{-2 t} u(t)-e^{-4 t} u(t)
$$

QUESTION 2:

Consider a system with impulse response:

$$
h(t)=e^{-t / 2} u(t)+e^{-t} u(t)+e^{t} u(-t)
$$

Where are the poles located and what is the ROC?
A: Poles at $s=\{-1,0\},\{0.5,0\},\{1,0\}$, ROC: $-1<\mathfrak{R}(s)<0.5$
B: Poles at $s=\{-0.5,0\},\{-1,0\},\{1,0\}$, ROC: $-1<\mathfrak{R}(s)<1$
C: Poles at $s=\{-0.5,0\},\{-1,0\},\{1,0\}$, ROC: $-0.5<\mathfrak{R}(s)<1$

Consider a system with impulse response:

$$
h(t)=e^{-t / 2} u(t)+e^{-t} u(t)+e^{t} u(-t)
$$

Where are the poles located and what is the ROC?
A: Poles at $s=\{-1,0\},\{0.5,0\},\{1,0\}$, ROC: $-1<\mathfrak{R}(s)<0.5$
B: Poles at $s=\{-0.5,0\},\{-1,0\},\{1,0\}$, ROC: $-1<\mathfrak{R}(s)<1$
C: Poles at $s=\{-0.5,0\},\{-1,0\},\{1,0\}$, ROC: $-0.5<\mathfrak{R}(s)<1$

EXPLANATION

$$
\begin{aligned}
h(t) & =e^{-t / 2} u(t)+e^{-t} u(t)+e^{t} u(-t) \\
H(s) & =\int_{-\infty}^{\infty} x(t) e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-(s+0.5) t} d t+\int_{0}^{\infty} e^{-(s+1) t} d t+\int_{-\infty}^{0} e^{-(s-1) t} d t \\
& =\left[\frac{-1}{s+0.5} e^{-(s+0.5) t}\right]_{0}^{\infty}+\left[\frac{-1}{s+1} e^{-(s+1) t}\right]_{0}^{\infty}+\left[\frac{-1}{s-1} e^{-(s-1) t}\right]_{-\infty}^{0} \\
& =\frac{1}{s+0.5}+\frac{1}{s+1}-\frac{1}{s-1} \\
& \operatorname{ROC}: \mathfrak{R}(s)>-0.5 \text { and } \mathfrak{R}(s)>-1 \text { and } \mathfrak{R}(s)<1 \\
& \operatorname{ROC}:-0.5<\mathfrak{R}(s)<1
\end{aligned}
$$

Therefore, poles at $s=\{-1,0\}, s=\{-0.5,0\}$ and $s=\{1,0\}$

QUESTION 3:

What is the correct mapping between these signals and their ROCs?
A: (i) : (x),
(ii) : (y),
(iii) : (z)
B: (i) : (z),
(ii) : (y),
(iii) : (x)
C: (i) : (y),
(ii) : (z),
(iii) : (x)

What is the correct mapping between these signals and their ROCs?
A: (i) : (x),
(ii) : (y),
(iii) : (z)
B: (i) : (z),
(ii) : (y),
(iii) : (x)
C: (i) : (y),
(ii) : (z),
(iii) : (x)

EXPLANATION

Right-sided

Left-sided

Two-sided

For which of these signals does the Fourier transform exist?

QUESTION 4:

An absolutely integrable signal $x(t)$, i.e. its Fourier transform $X(j \omega)$ exists, is known to have a pole at $s=2$.

Which of these statements are true? (multiple options allowed)
A: $x(t)$ could be of finite duration
B: $x(t)$ could be left sided
C: $x(t)$ could be right sided
D: $x(t)$ could be two sided

An absolutely integrable signal $x(t)$, i.e. its Fourier transform $X(j \omega)$ exists, is known to have a pole at $s=2$.

Which of these statements are true? (multiple options allowed)
A: $x(t)$ could be of finite duration
B: $x(t)$ could be left sided
C: $x(t)$ could be right sided
D: $x(t)$ could be two sided

EXPLANATION

If $x(t)$ is absolutely integrable and of finite duration, then the ROC is the entire s-plane (the Laplace transform integral is finite, i.e. $X(s)$ exists, for any s).

A signal $x(t)$ is absolutely integrable, i.e. its Fourier transform $X(j \omega)$ exists, if and only if the ROC of the corresponding Laplace transform $X(s)$ contains the imaginary axis $\mathfrak{R}(s)=0$ or $s=j \omega$.

Left-sided

Right-sided

Two-sided

QUESTION 5:

Determine which of the following pole-zero diagrams could represent Laplace transforms of even functions of time.
(multiple options allowed)

A

B

C

Determine which of the following pole-zero diagrams could represent Laplace transforms of even functions of time.
(multiple options allowed)

A

B

C

EXPLANATION

If $x(t)$ is an even function of time, then the corresponding Laplace transform must be symmetric about the point $s=0$.

$$
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t}=\int_{-\infty}^{\infty} x(-t) e^{-s t}=\int_{-\infty}^{\infty} x(t) e^{s t}=X(-s)
$$

Thus the pole-zero diagram must also be symmetric about $s=0$.

This means that $X_{2}(s)$ cannot correspond to an even function of time.

For $X(s)$ to be symmetric about $s=0$, then the region of convergence must be symmetric about the $j \omega$ axis. Symmetry is not possible for $X_{3}(s)$, which must be either right-sided or left-sided but not both.
$X_{1}(s)$ has partial fraction expansions:

$$
\frac{A}{s+1}+\frac{B}{s-1}
$$

To get no finite zeros as in $X_{1}(s), A=-B$. The corresponding time function is:

$$
x_{1}(t)=A\left(e^{-t} u(t)+e^{t} u(-t)\right)
$$

which is an even function of time for all values of A. Thus, only $x_{1}(t)$ is an even function of t.

EXPLANATION

Note that symmetry of the pole-zero diagram is necessary but not sufficient for symmetry of the corresponding time function, for example $x_{4}(t)$.

In this case $x_{4}(t)$ has a similar partial fraction expansion to $x_{1}(t)$:

$$
\frac{A}{s+1}+\frac{B}{s-1}
$$

But to get a zero at $s=0, A=B$. The corresponding time function is:

$$
x_{4}(t)=A\left(e^{-t} u(t)-e^{t} u(-t)\right)
$$

which is an odd function of time for all values of A.

