Imperial College London

MODULE 1 CLASS

Aidan Hogg & Patrick Naylor - Autumn Term 2020 ELEC50013: Signal and Systems Department of Electrical and Electronic Engineerin

PEER INSTRUCTION

Why 'Peer Instruction'?

- 1: It forces students to engage in the class
- 2: Students in the past have given very positive feedback
- 3: In the exam most students do well in the mathematical questions but clearly have very limited conceptual understanding of the questions they are solving (plug 'n chug)

But what if I am struggling with a particular problem?

Piazza: This is where you can ask detailed questions on problems you are struggling with.

Sign up on Blackboard!

PEER INSTRUCTION

Method:

- 1: Conceptual question posed students individually come up initial answer (5 mins)
- 2: Explanation/discussion of correct answer (5 mins)

QUESTION 1:

Consider the following 3 systems:

$$v[n] = (-1)^n$$

What fact is true about all these systems?

- A: They are all even but not all periodic
- B: They are all periodic but not all even
- C: They all even and periodic

Consider the following 3 systems:

What fact is true about all these systems?

A: They are all even but not all periodic

B: They are all periodic but not all even

C: They all even and periodic

QUESTION 2:

Given x(t) is:

Which of the following correctly depicts the signal: x(-2t-1)

Given x(t) is:

Which of the following correctly depicts the signal: x(-2t-1)

Given x(t) is:

Basic operations on signals:

Precedence rule: Time-shift operation is always performed first and then the time scaling (and reflection)

Correct order of operations:

QUESTION 3:

When referring to a "BIBO-stable" system what is meant by the term "bounded"?

A sequence x[n] is bounded iff $\exists B < \infty$ such that

A:
$$\sum |x[n]| < B$$

$$\operatorname{B:}\ |x[n]| < B \ \forall \ n$$

C:
$$\sum |x[n]|^2 < B$$

When referring to a "BIBO-stable" system what is meant by the term "bounded"?

A sequence x[n] is bounded iff $\exists B < \infty$ such that

A:
$$\sum |x[n]| < B$$

B:
$$|x[n]| < B \ \forall \ n$$

C:
$$\sum |x[n]|^2 < B$$

When referring to a "BIBO-stable" system what is meant by the term "bounded"?

A sequence x[n] is bounded iff $\exists B < \infty$ such that

A:
$$\sum |x[n]| < B$$
 (Absolutely summable)

B:
$$|x[n]| < B \ \forall \ n$$
 (Bounded)

C:
$$\sum |x[n]|^2 < B$$
 (Finite Energy)

QUESTION 4:

Consider the following systems:

$$y(t) = \frac{d}{dt}x(t)$$

$$v[n] = 0.5x[n] + 0.5v[n-1]$$

$$w[n] = \sum_{k=-\infty}^{n} x[k+2]$$

What fact is true about all these systems?

- A: They are all causal
- B: They are all stable
- C: They are all stable and causal
- D: None of them

Consider the following systems:

$$y(t) = \frac{d}{dt}x(t)$$

$$v[n] = 0.5x[n] + 0.5v[n-1]$$

$$w[n] = \sum_{k=-\infty}^{n} x[k+2]$$

What fact is true about all these systems?

- A: They are all causal
- B: They are all stable
- C: They are all stable and causal
- D: None of them

True facts:

$$y(t) = \frac{d}{dt}x(t)$$

Stable and Causal

$$v[n] = 0.5x[n] + 0.5v[n-1]$$

Stable and Causal

$$w[n] = \sum_{k=-\infty}^{n} x[k+2]$$

$$w[n] = \sum_{k=-\infty}^{n-1} x[k+2] + x[n+2]$$

Not Stable and Non-causal

$$w[n] = w[n-1] + x[n+2]$$

QUESTION 5:

Which of these system are linear? (multiple options allowed)

$$y[n] = \sqrt{x[n]}$$

$$v(t) = \cos(x(t))$$

$$w[n] = x[2(n-1)]$$

Which of these system are linear? (multiple options allowed)

$$y[n] = \sqrt{x[n]}$$

$$v(t) = \cos(x(t))$$

$$w[n] = x[2(n-1)]$$

 $y[n] = \sqrt{x[n]}$ is **NOT linear** because if

$$y_1[n] = \sqrt{x_1[n]},$$

and

$$y_2[n] = \sqrt{x_2[n]},$$

and $x[n]=\alpha x_1[n]+\beta x_2[n],$ then the output y[n] corresponding to the input x[n] is

$$\begin{split} y[n] &= \sqrt{x[n]} = \sqrt{\alpha x_1[n] + \beta x_2[n]]} \\ &\neq \alpha y_1[n] + \beta y_2[n] = \alpha \sqrt{x_1[n]} + \beta \sqrt{x_2[n]} \end{split}$$

 $v(t) = \cos(x(t))$ is **NOT linear** because if

$$v_1(t) = \cos(x_1(t)),$$

and

$$v_2(t)=\cos(x_2(t)),$$

and $x(t) = \alpha x_1(t) + \beta x_2(t)$, then the output v(t) corresponding to the input x(t) is

$$\begin{split} v(t) &= \cos(\alpha x_1(t) + \beta x_2(t)) \\ &= \cos(\alpha x_1(t))\cos(\beta x_2(t)) - \sin(\alpha x_1(t))\sin(\beta x_2(t)) \\ &\neq \alpha\cos(x_1(t)) + \beta\cos(x_2(t)) \end{split}$$

$$w[n] = x[2(n-1)]$$
 is **linear** because if

$$w_1[n] = x_1[2(n-1)], \\$$

and

$$w_2[n] = x_2[2(n-1)], \\$$

and $x[n]=\alpha x_1[n]+\beta x_2[n],$ then the output w[n] corresponding to the input x[n] is

$$\begin{split} w[n] &= x[2(n-1)] = \alpha x_1[2(n-1)] + \beta x_2[2(n-1)] \\ &= \alpha w_1[n] + \beta w_2[n] \end{split}$$

QUESTION 6:

Which of these statements are true? (multiple options allowed)

A: It is possible for a noncausal system to possess memory

B: It is possible for a signal to be neither a power or energy signal

C: It is possible for a signal to be linear but not time invariant

D: None of them

Which of these statements are true? (multiple options allowed)

A: It is possible for a noncausal system to possess memory

B: It is possible for a signal to be neither a power or energy signal

C: It is possible for a signal to be linear but not time invariant

D: None of them

Memory

A system is seen to possess memory if the output signal depends on values of the input signal at any past (or future) time

Causality

There are a small number of sequences that are worth taking note of:

 $\mbox{Right-sided:} \qquad \qquad h[n] = 0 \mbox{ for } n < N_{\rm min} \label{eq:hamiltonian}$

Left-sided: $h[n] = 0 \; {\rm for} \; n > N_{\rm max}$

Finite length: $h[n] = 0 \; \text{for} \; n \notin [N_{\min}, N_{\max}]$

Causal: h[n] = 0 for n < 0Anticausal: h[n] = 0 for n > 0

Linearity and time-invariance

A linear time-invariant system can be defined by two properties:

Linear:
$$H\{\alpha u[n] + \beta v[n]\} = \alpha H\{u[n]\} + \beta H\{v[n]\}$$

Time Invariant:
$$y[n] = H\{x[n]\} \Rightarrow y[n-r] = H\{x[n-r]\} \forall r$$

Note: The behaviour of an LTI system is completely defined by its impulse response: $h[n] = H\{\delta[n]\}$

Power and energy signals

- \bullet A signal is called a power signal if $0 \leq P_{\infty} \leq \infty$
- \bullet A signal is called an energy signal if $E_{\infty} \leq \infty$
- A signal can be either a power signal an energy signal or nether type.
- A signal cannot be both an energy signal and a power signal

An signal that is nether a power or energy signal would have infinite power (and also infinite energy).

For example an exponential signal:

$$x(t) = e^t$$