Imperial College
 London

MODULE 1 CLASS

Aidan Hogg \& Patrick Naylor - Autumn Term 2020
ELEC50013: Signal and Systems
Department of Electrical and Electronic Engineering

Why ‘Peer Instruction’?

1: It forces students to engage in the class
2: Students in the past have given very positive feedback
3: In the exam most students do well in the mathematical questions but clearly have very limited conceptual understanding of the questions they are solving (plug ' n chug)

But what if I am struggling with a particular problem?

Piazza: This is where you can ask detailed questions on problems you are struggling with.

Sign up on Blackboard!

PEER INSTRUCTION

Method:

1: Conceptual question posed - students individually come up initial answer (5 mins)

2: Explanation/discussion of correct answer (5 mins)

QUESTION 1:

Consider the following 3 systems:

$$
\begin{gathered}
y(t)=\sin (t) \cos (t) \\
v[n]=(-1)^{n}
\end{gathered}
$$

What fact is true about all these systems?
A: They are all even but not all periodic
B: They are all periodic but not all even
C: They all even and periodic

Consider the following 3 systems:

$$
\begin{gathered}
y(t)=\sin (t) \cos (t) \\
v[n]=(-1)^{n}
\end{gathered}
$$

What fact is true about all these systems?
A: They are all even but not all periodic
B: They are all periodic but not all even
C: They all even and periodic

EXPLANATION

Even and Periodic

Odd and Periodic

Even and Periodic

QUESTION 2:

Given $x(t)$ is:

Which of the following correctly depicts the signal: $x(-2 t-1)$

Given $x(t)$ is:

Which of the following correctly depicts the signal: $x(-2 t-1)$

EXPLANATION

Given $x(t)$ is:

Basic operations on signals:

EXPLANATION

Precedence rule: Time-shift operation is always performed first and then the time scaling (and reflection)

Correct order of operations:

1. Time-shifting

2. Time-scaling

3. Reflection

QUESTION 3:

When referring to a "BIBO-stable" system what is meant by the term "bounded"?

A sequence $x[n]$ is bounded iff $\exists B<\infty$ such that
A: $\sum|x[n]|<B$
B: $|x[n]|<B \forall n$
C: $\sum|x[n]|^{2}<B$

When referring to a "BIBO-stable" system what is meant by the term "bounded"?

A sequence $x[n]$ is bounded iff $\exists B<\infty$ such that
A: $\sum|x[n]|<B$
B: $|x[n]|<B \forall n$
C: $\sum|x[n]|^{2}<B$

EXPLANATION

When referring to a "BIBO-stable" system what is meant by the term "bounded"?

A sequence $x[n]$ is bounded iff $\exists B<\infty$ such that
A: $\sum|x[n]|<B \quad$ (Absolutely summable)
B: $|x[n]|<B \forall n \quad$ (Bounded)
C: $\sum|x[n]|^{2}<B \quad$ (Finite Energy)

QUESTION 4:

Consider the following systems:

$$
\begin{gathered}
y(t)=\frac{d}{d t} x(t) \\
v[n]=0.5 x[n]+0.5 v[n-1] \\
w[n]=\sum_{k=-\infty}^{n} x[k+2]
\end{gathered}
$$

What fact is true about all these systems?
A: They are all causal
B: They are all stable
C: They are all stable and causal
D: None of them

Consider the following systems:

$$
\begin{gathered}
y(t)=\frac{d}{d t} x(t) \\
v[n]=0.5 x[n]+0.5 v[n-1] \\
w[n]=\sum_{k=-\infty}^{n} x[k+2]
\end{gathered}
$$

What fact is true about all these systems?
A: They are all causal
B: They are all stable
C: They are all stable and causal
D: None of them

EXPLANATION

True facts:

$$
\begin{array}{cr}
y(t)=\frac{d}{d t} x(t) & \text { Stable and Causal } \\
v[n]=0.5 x[n]+0.5 v[n-1] & \text { Stable and Causal } \\
w[n]=\sum_{k=-\infty}^{n} x[k+2] & \\
w[n]=\sum_{k=-\infty}^{n-1} x[k+2]+x[n+2] & \text { Not Stable and Non-causal } \\
w[n]=w[n-1]+x[n+2] &
\end{array}
$$

QUESTION 5:

Which of these system are linear? (multiple options allowed)

$$
\begin{gathered}
y[n]=\sqrt{x[n]} \\
v(t)=\cos (x(t)) \\
w[n]=x[2(n-1)]
\end{gathered}
$$

Which of these system are linear? (multiple options allowed)

$$
\begin{gathered}
y[n]=\sqrt{x[n]} \\
v(t)=\cos (x(t)) \\
w[n]=x[2(n-1)]
\end{gathered}
$$

EXPLANATION

$y[n]=\sqrt{x[n]}$ is NOT linear because if

$$
\begin{gathered}
y_{1}[n]=\sqrt{x_{1}[n]}, \\
\text { and } \\
y_{2}[n]=\sqrt{x_{2}[n]},
\end{gathered}
$$

and $x[n]=\alpha x_{1}[n]+\beta x_{2}[n]$, then the output $y[n]$ corresponding to the input $x[n]$ is

$$
\begin{aligned}
y[n] & =\sqrt{x[n]}=\sqrt{\left.\alpha x_{1}[n]+\beta x_{2}[n]\right]} \\
& \neq \alpha y_{1}[n]+\beta y_{2}[n]=\alpha \sqrt{x_{1}[n]}+\beta \sqrt{x_{2}[n]}
\end{aligned}
$$

EXPLANATION

$v(t)=\cos (x(t))$ is NOT linear because if

$$
\begin{gathered}
v_{1}(t)=\cos \left(x_{1}(t)\right), \\
\text { and } \\
v_{2}(t)=\cos \left(x_{2}(t)\right),
\end{gathered}
$$

and $x(t)=\alpha x_{1}(t)+\beta x_{2}(t)$, then the output $v(t)$ corresponding to the input $x(t)$ is

$$
\begin{aligned}
v(t) & =\cos \left(\alpha x_{1}(t)+\beta x_{2}(t)\right) \\
& =\cos \left(\alpha x_{1}(t)\right) \cos \left(\beta x_{2}(t)\right)-\sin \left(\alpha x_{1}(t)\right) \sin \left(\beta x_{2}(t)\right) \\
& \neq \alpha \cos \left(x_{1}(t)\right)+\beta \cos \left(x_{2}(t)\right)
\end{aligned}
$$

EXPLANATION

$w[n]=x[2(n-1)]$ is linear because if

$$
\begin{aligned}
w_{1}[n]= & x_{1}[2(n-1)], \\
& \text { and } \\
w_{2}[n]= & x_{2}[2(n-1)],
\end{aligned}
$$

and $x[n]=\alpha x_{1}[n]+\beta x_{2}[n]$, then the output $w[n]$ corresponding to the input $x[n]$ is

$$
\begin{aligned}
w[n] & =x[2(n-1)]=\alpha x_{1}[2(n-1)]+\beta x_{2}[2(n-1)] \\
& =\alpha w_{1}[n]+\beta w_{2}[n]
\end{aligned}
$$

QUESTION 6:

Which of these statements are true? (multiple options allowed)

A: It is possible for a noncausal system to possess memory
B: It is possible for a signal to be neither a power or energy signal
C: It is possible for a signal to be linear but not time invariant
D: None of them

Which of these statements are true? (multiple options allowed)

A: It is possible for a noncausal system to possess memory
B: It is possible for a signal to be neither a power or energy signal
C: It is possible for a signal to be linear but not time invariant
D: None of them

EXPLANATION

Memory

A system is seen to possess memory if the output signal depends on values of the input signal at any past (or future) time

Causality

There are a small number of sequences that are worth taking note of:

Right-sided:
Left-sided:
Finite length:
Causal:
Anticausal:

$$
\begin{aligned}
& h[n]=0 \text { for } n<N_{\min } \\
& h[n]=0 \text { for } n>N_{\max } \\
& h[n]=0 \text { for } n \notin\left[N_{\min }, N_{\max }\right] \\
& h[n]=0 \text { for } n<0 \\
& h[n]=0 \text { for } n>0
\end{aligned}
$$

EXPLANATION

Linearity and time-invariance

A linear time-invariant system can be defined by two properties:
Linear: $H\{\alpha u[n]+\beta v[n]\}=\alpha H\{u[n]\}+\beta H\{v[n]\}$
Time Invariant: $y[n]=H\{x[n]\} \Rightarrow y[n-r]=H\{x[n-r]\} \forall r$

Note: The behaviour of an LTI system is completely defined by its impulse response: $h[n]=H\{\delta[n]\}$

Power and energy signals

- A signal is called a power signal if $0 \leq P_{\infty} \leq \infty$
- A signal is called an energy signal if $E_{\infty} \leq \infty$
- A signal can be either a power signal an energy signal or nether type.
- A signal cannot be both an energy signal and a power signal

An signal that is nether a power or energy signal would have infinite power (and also infinite energy).

For example an exponential signal:

$$
x(t)=e^{t}
$$

