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ABSTRACT

This paper shows that time varying pitch properties can be used
advantageously within the segmentation step of a multi-talker
diarization system. First a study is conducted to verify that changes
in pitch are strong indicators of changes in the speaker. It is
then highlighted that an individual’s pitch is smoothly varying
and, therefore, can be predicted by means of a Kalman filter.
Subsequently it is shown that if the pitch is not predictable then
this is most likely due to a change in the speaker. Finally, a novel
system is proposed that uses this approach of pitch prediction for
speaker change detection. This system is then evaluated against a
commonly used MFCC segmentation system. The proposed system
is shown to increase the speaker change detection rate from 43.3%
to 70.5% on meetings in the AMI corpus. Therefore, there are
two equally weighted contributions in this paper: 1. We address
the question of whether a change in pitch is a reliable estimator
of a speaker change in multi-talk meeting audio. 2. We develop a
method to extract such speaker changes and test them on a widely
available meeting corpus.

Index Terms— speaker segmentation, pitch tracking, Kalman
filter

1. INTRODUCTION

It is often desirable to keep records of speech, for example, during
conference calls and at meetings. To store these discussions in a
more useful manner, automatic speech recognition (ASR) can be
used to generate transcripts. However, whereas ASR addresses
the question of what is said, it cannot answer the question of who
spoke at any given time. Accurate knowledge of the identity of the
speaker is typically required for speaker indexing [1]; improved ASR
[2] and to bring single speaker-based algorithms into multi-speaker
domains. The task of identifying a speaker within an audio recording
or stream is often referred to as diarization, which has the end
goal of answering the question: “who spoke when?” [3]. The
process of audio diarization consists of two tasks: the first task is
segmentation which establishes when a new talker starts speaking
and the current speaker stops; the second task is clustering, where
every segmented part of the audio containing speech is assigned to
an individual speaker. This whole process is also often complicated
by the presence of reverberation [4] and noise [5].

In the past, systems have been proposed that perform the
diarization task, some of the most commonly used being: LIUM
[6], DiarTk [7], ALIZÉ [8] and SIDEKIT [9]. These systems all
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Fig. 1. Diarization system architecture comparison.

contain different segmentation subsystems which can be grouped
together into a set of categories. The first type uses Mel-frequency
cepstral coefficients (MFCCs) [10] to perform Bayesian information
criterion (BIC) segmentation [6], [9]. The second type uses a
uniform segmentation [7]. The last type performs a one-step
segmentation and clustering algorithm in the form of an evolutive
hidden Markov model (E-HMM) [8]. Various other segmentation
algorithms have also been proposed in the literature [11], [12], [13].

The SIDEKIT system in particular consists of three steps, shown
in Fig. 1a. The first step merges together all of the voice active
regions of the VAD output that are in close proximity to each other.
The second step performs Gaussian divergence segmentation where
the MFCCs are used to segment the voice active regions that contain
multiple speakers. Lastly, linear Bayesian information criterion
(BIC) based segmentation is performed which also uses the MFCCs
to fuse consecutive voice active regions of the same speaker. It
is important to note that none of these popular systems, including
SIDEKIT, use pitch information to perform segmentation. Pitch is
ordinarily only utilised as a feature [14] to improve the performance
of the clustering component in a diarization system.

This paper will focus on the task of segmentation and show why
temporal variation in pitch can be used advantageously for speaker
change detection. We will also present a novel method using
pitch to improve the segmentation process. It must be noted that
throughout this paper we have used the term pitch to be synonymous
with fundamental frequency even though pitch strictly refers to a
perceptual phenomenon.

In the past methods have been proposed that use pitch to improve
the segmentation process. In [15] pitch is used along side LSP [16]
and MFCC features to calculate a divergence distance threshold to
detect speaker change boundaries. There have also been methods
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(a) Kalman filter pitch tracks where ‘ES2004b’ is the input.
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(b) Kalman filter pitch tracks where ‘TS3003b’ is the input.

Fig. 2. The individual pitch tracks generated from PEFAC by using
the Kalman filter on the individual headset microphones separately.

that have been developed for real-time diarization which use pitch as
the sole feature [17], [18]. None of these previous methods, however,
attempt to model the pitch which has two major advantages. First,
the model can be exploited to remove errors in the pitch estimates.
Second, the errors in the pitch prediction given by the model can
be utilised to detect speaker changes instead of using the delta pitch
change between two frames [17], [18].

Figure 1b shows the novel system that is proposed in this
paper which takes advantage of pitch modelling when performing
segmentation. This method uses a Kalman filter to predict the future
pitch of the speaker. Kalman filters have been used in the past to
perform pitch estimation, for example [19], [20], [21]. In contrast,
the proposed system only uses the Kalman filter for future pitch
prediction and not pitch estimation. Hence, it could be used in
conjunction with any pitch estimator; for the purposes of this paper
we used the pitch estimator PEFAC [22]. The main idea behind this
method is that the pitch prediction made by the Kalman filter can be
used to decide if there has been a change in speaker. It does this by
assuming that the pitch of a speaker should be predictable whereas,
if the pitch cannot be predicted, then a speaker change may be the
cause.

2. SPEAKER PITCH TRACKS

First to address the question of whether changes in pitch are reliable
estimators of speaker changes in multi-talk meeting audio, the
following investigation has been carried out in Sections 2 and 3.

Figure 2 is generated by first running PEFAC on the headset
microphone recordings taken from AMI [23]. Then the Kalman
filtering method described in Section 4 was applied to the result to
generate smooth pitch estimates. The measurements obtained are the

Meeting SC | PC
ES2004a 94.49%
ES2004b 89.25%
ES2004c 95.21%
ES2004d 91.85%
IS1009a 96.12%
IS1009b 98.94%
IS1009c 97.67%
IS1009d 98.55%
EN2002a 92.35%
EN2002b 87.01%
EN2002c 79.37%
EN2002d 86.00%
TS3003a 76.54%
TS3003b 76.59%
TS3003c 75.82%
TS3003d 81.34%

Meeting PC | SC
ES2004a 78.76%
ES2004b 68.60%
ES2004c 70.22%
ES2004d 73.38%
IS1009a 68.91%
IS1009b 64.27%
IS1009c 59.38%
IS1009d 66.60%
EN2002a 88.59%
EN2002b 83.40%
EN2002c 87.70%
EN2002d 81.02%
TS3003a 52.08%
TS3003b 48.46%
TS3003c 56.47%
TS3003d 62.68%

PC | SC The probability that there is a ‘pitch change’ given that there
is a ‘speaker change’

SC | PC The probability that there is a ‘speaker change’ given that
there is a ‘pitch change’

Table 1. Speaker and pitch change analysis for the AMI corpus.

best ground-truth available of the individual speaker pitch tracks. It
is clear to see from Fig. 2a that the four individuals in AMI meeting
‘ES2004b’ speak at a very different pitch. However, AMI meeting
‘TS3003b’, in Fig. 2b, highlights that some individuals speak at
a very similar pitch. This is most likely due to the fact that in
this particular meeting all the speakers are male. The dotted lines
show the mean pitch of each speaker in AMI where the first letter
of the speaker label relates to the gender of the speaker i.e. M:
male and F: female. It can also be observed in both figures that
the average variation in pitch is very similar for most speakers. This
result demonstrates that the mean of the pitch considered in isolation
does not contain enough information to identify the speaker.

3. VARIATIONS OF PITCH OVER TIME

It has been seen in Section 2 that some speakers do indeed have a
very similar mean pitch for their voice and, therefore, this section
will show that even under these conditions it is still possible to
identify when there is a change in the speaker using information
about the way in which pitch varies over time.

It has been previously shown that the pitch of an individual
speaker only varies in a smooth manner due to physiological
constraints [24]. Accordingly it is possible to predict the future
pitch of the speaker based on their current pitch. Thus if the pitch
cannot be predicted then this could be an indication that there has
been a change in speaker. In this paper, this prediction is attained by
means of a Kalman filter which is described in detail in Section 4.

Table 1 is generated using the headset microphone recordings
taken from AMI and shows the probability that there is a speaker
change given that there is a pitch change and vice-versa. These
results demonstrate that if there is a change in speaker then there is
a very high probability that there will be a change in pitch. Thus this
result verifies that the detection of pitch changes can be exploited
constructively for speaker change detection. Table 1, however,
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Fig. 3. Estimated speaker pitch tracks (solid lines) from ‘IS1009b’
along with the actual speaker changes (dotted lines).

shows that there can be a speaker change without a change in pitch.
Figure 3 provides a visualization example for the results shown

in Table 1. This plot is generated using the method from Section 4
with a single distance microphone (SDM) recording from AMI. It is
here to highlight that in this particular meeting, ‘IS1009b’, when a
pitch change occurs, it always coincides with a change in the speaker.
The plot also shows that many speaker changes go undetected.

4. METHOD

We now present a method that utilises the time varying properties of
the pitch to detect speaker changes within a multi-talker scenario. A
block diagram of the proposed system is provided in Fig. 1b.

4.1. Pitch Estimation

The first step of the proposed method is the pitch estimator; for this
paper the PEFAC [22], [25] algorithm was chosen.

4.2. Kalman Filter

The next step is to use a Kalman filter [26] to estimate the pitch
trajectories from PEFAC. Pitch, x(n), for time frame, n, is modelled
here as a random walk with zero-mean, normally distributed
increments such that

x(n+ 1) = x(n) + w, w ∈ N (0, σ2
w) , (1)

where the pitch at n + 1 deviates from the pitch at n with variance
of σ2

w. The PEFAC estimates z(n) are modelled as

z(n) = x(n) + v, v ∈ N (0, σ2
v) , (2)

where the measurement noise, v, in this case models the errors in the
pitch estimates from PEFAC.

The Kalman filter estimates the state of the system and then
acquires feedback from noisy measurements using a prediction step
and an update step. The predicted pitch estimate, x̂n|n−1, and
predicted estimate variance, Pn|n−1, are given by

x̂n|n−1 = x̂n−1|n−1, (3)

Pn|n−1 = Pn−1|n−1 + σ2
w. (4)

The updated pitch estimate, x̂n|n, and updated estimate variance,
Pn|n, are given by

x̂n|n = x̂n|n−1 +Kn(zn − x̂n|n−1), (5)

Pn|n = (1−Kn)
2Pn|n−1 +K2

nσ
2
v. (6)

Where the innovation variance, Sn, and optimal Kalman gain, Kn,
are given by

Sn = Pn|n−1 + σ2
v, (7)

Kn =
Pn|n−1

Sn
. (8)

Thus the error between measurement and prediction follows as

ỹn|n = zn − x̂n|n. (9)

In our method we utilise two useful outputs from PEFAC: the pitch
estimate of each frame and the corresponding probability that the
frame is voiced.

The prediction step is carried out on every frame, however,
the update step is only performed if the frame is voiced. This is
considered to be the case if the probability that the frame is voiced
is above a threshold ξ.

Thus if an unvoiced frame is observed then the pitch remains
constant in (3) with the predicted estimate variance being increased
in (4). This outcome is desirable as it makes the prediction less
reliable as time goes on without a voiced frame being observed.

Given that Kalman gain, Kn, trades-off the measured pitch
against the predicted pitch for the frame, Kn increases as the time
between the update steps increases. This means that as the time
elapsed since the last update frame increases the result will be more
influenced by the measurement, otherwise it will be more influenced
by the prediction from the model. This is seen in (5) if Kn = 1
then x̂n|n = zn (only the measurement) else if Kn = 0 then
x̂n|n = x̂n|n−1 (only the prediction).

4.3. Speaker Change Detection

Our approach for speaker change detection utilises the error between
the measurement and the prediction (9). If the error is above a
threshold φ then that implies that the error is large and the pitch
could not be predicted. An experiential threshold φ is acceptable in
this case as the pitch of different speakers can be easily anticipated.
Therefore, this change detection approach works by attributing a
large prediction error to a change in the speaker.

A Kalman filter is initialised and tracks the first speaker.
Subsequently, when (9) exceeds a threshold of φ a new Kalman
filter is initialised to track the second speaker. On detection of the
next speaker change, the measurement of the pitch is compared with
all previously generated Kalman filter pitch tracks to find the track
closest to the current measurement of the pitch. If the difference
between the current measurement and the last pitch value of the
closest Kalman pitch track is below a threshold of ρ, the previous
Kalman filter is continued. If on the other hand, the closest Kalman
filter to the measurement does not satisfy this threshold then a new
Kalman filter would be generated.

The reasoning behind this Kalman filter birthing approach is that
if the speakers do indeed have a different mean pitch, e.g. AMI
meeting ‘ES2004b’ shown in Fig. 2a, then the different Kalman
filter pitch tracks should correspond to the different speakers in the
audio recording of the meeting.

4.4. Voice Activity Detection

To generate the final segmentation, the detected speaker changes
from the pitch are merged with the results from voice activity
detection (VAD) [27].



Meeting
Performance Evaluation

Proposed Pitch Segmentation MFCC Segmentation (SIDEKIT)
Hit Miss Multi-Hit MSE Hit Miss Multi-Hit MSE

ES2004a 72.80% 15.20% 12.00% 0.0334 50.40% 36.00% 13.60% 0.0287
ES2004b 74.89% 15.15% 9.96% 0.0431 46.75% 39.39% 13.85% 0.0337
ES2004c 64.65% 27.27% 8.08% 0.0409 42.42% 50.00% 7.58% 0.0404
ES2004d 69.10% 23.61% 7.30% 0.0379 46.78% 41.20% 12.02% 0.0270
IS1009a 65.12% 27.91% 6.98% 0.0442 34.88% 62.79% 2.33% 0.0487
IS1009b 72.53% 22.53% 4.95% 0.0543 36.81% 52.20% 10.99% 0.0219
IS1009c 75.31% 16.67% 8.02% 0.0452 38.27% 53.70% 8.02% 0.0280
IS1009d 61.86% 24.58% 13.56% 0.0558 36.44% 50.85% 12.71% 0.0335
EN2002a 63.76% 27.18% 9.06% 0.0520 36.59% 54.70% 8.71% 0.0349
EN2002b 66.03% 23.75% 10.21% 0.0606 38.48% 51.78% 9.74% 0.0393
EN2002c 68.46% 22.88% 8.67% 0.0530 41.42% 49.57% 9.01% 0.0330
EN2002d 59.12% 35.14% 5.74% 0.0480 33.11% 59.46% 7.43% 0.0333
TS3003a 76.19% 14.29% 9.52% 0.0247 38.10% 28.57% 33.33% 0.0237
TS3003b 87.10% 2.76% 10.14% 0.0362 58.53% 10.60% 30.88% 0.0249
TS3003c 76.52% 4.92% 18.56% 0.0406 57.95% 11.36% 30.68% 0.0290
TS3003d 73.95% 10.08% 15.97% 0.0404 56.30% 19.75% 23.95% 0.0317

Mean 70.46% 19.62% 9.92% 0.0444 43.33% 42.00% 14.68% 0.0320

Table 2. Performance of both the proposed system and SIDEKIT on multi-talker meetings in the AMI corpus.

The VAD output detects active speech regions, therefore, as part
of a preprocessing step if these regions have small pauses between
them then they are merged together. Subsequently, both the onsets
of speech detected by the VAD and the speaker changes detected by
the pitch are concatenated. If a VAD onset and a detected speaker
change are within ζ of each other, then only the detected speaker
change is included in the segmentation file.

5. COMPARATIVE EVALUATION

In order to evaluate the performance of this newly proposed system
shown in Fig. 1b, it is compared against a typical segmentation
system SIDEKIT [9] as illustrated in Fig. 1a.

Both the accuracy and the reliability of speaker change detection
are compared for both the proposed system and SIDEKIT with the
results shown in Table 2. The hit rate is defined as the number of
speaker changes that are detected by a single detection. In contrast,
the miss rate is given by the number of speaker changes that go
undetected and the multi-hit rate is specified as the number of
speaker changes that are detected multiple times. When evaluating
segmentation performance, it is common practice to apply a time
collar around every ground-truth speaker change in order to account
for possible inaccuracies. The results in Table 2, therefore, incorporate
a collar of 50 ms applied to each ground-truth speaker change.

Through experimentation it was found that the implementation
of the proposed method should use a process noise, v, of 0.01 and a
pitch variation, w, of 20. It was also decided that a frame should be
considered voiced if ξ was greater than 95% and the thresholds φ and
ρ should be set to 10 Hz and 50 Hz respectively. In a similar manner
it was determined that a VAD onset should only be incorporated into
the segmentation file if ζ was greater than 5 ms.

It can be seen in Table 2 that the percentage of speaker changes
that are detected increases from 43.3% for SIDEKIT to 70.5% for
our system. Thus, the proposed pitch system is far more likely to
detect a speaker change within the given 50 ms collar. It is important
to note for both systems that increasing the collar decreases the miss
rate, increases the multi-hit rate and does not change the hit rate.

The mean squared error (MSE) in time was also calculated
in Table 2 for all the hits and the closest multi-hit detections
to the oracle speaker changes, against the ground-truth given by
the label files from AMI. The results show that when a speaker
change is detected by both systems the use of MFCCs in SIDEKIT
gives slightly more accurate temporal segmentation (MSE = 30 ms)
compared to the use of pitch (MSE = 40 ms).

To realise the significance of this improvement, the whole
diarization process should be considered. In a typical diarization
system after the segmentation process, clustering is performed
and then Viterbi alignment is exploited as previously reported in
[28]. Consequently, mediocre performance in the segmentation
system is tolerated. However, if the clustering algorithm is given
a better segmentation, where almost all segments just contain one
speaker, then it will achieve a far better clustering result; improving
the performance of the given diarization system which is highly
desirable. This is verified in [29] where an evaluation is undertaken
which shows that improving the segmentation performance leads to
better diarization accuracy and a lower diarization error rate.

6. CONCLUSION

A study of meetings in the AMI corpus has shown that a pitch change
is a strong indicator of a speaker change. This finding motivates the
use of pitch change as a feature - possibly combined with other
features - in speaker segmentation as used, for example, in the first
step of speaker diarization. It was also verified that pitch from an
individual speaker is smoothly varying and can be predicted by a
Kalman filter. Therefore, in this paper, a Kalman filtering approach
was proposed to identify speaker change boundaries based on a
model of the temporal variation of pitch.

The proposed Kalman filter prediction error-based approach
performed well when compared against a previous MFCC-based
method. An evaluation on the AMI corpus showed a speaker change
detection increase from 43.3% to 70.5%.
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