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peer instruction

Method:

1: Conceptual question posed - students think quietly on their
own and report initial answers on Mentimeter (3 mins)

2: Students discuss their answers in small groups (2 mins)
3: Explanation/discussion of correct answer (3 mins)
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Consider the following statements:

1: Allpass filters have mirror image numerator and denominator
coefficients

2: In an allpass filter, the zeros are the poles reflected in the unit
circle

3: Allpass filters have a gain magnitude of 1 even with coefficient
errors

Which of these statements are true?

A: 1
B: 1 and 2
C: All 3 of them



answer

Consider the following statements:

1: Allpass filters have mirror image numerator and denominator
coefficients

2: In an allpass filter, the zeros are the poles reflected in the unit
circle

3: Allpass filters have a gain magnitude of 1 even with coefficient
errors

Which of these statements are true?

A: 1
B: 1 and 2
C: All 3 of them



explanation

Allpass filters have mirror image numerator and denominator
coefficients

𝑏[𝑛] = 𝑎[𝑁 − 𝑛] ⇔ 𝐵(𝑧) = 𝑧−𝑁𝐴(𝑧−1)

𝐻(𝑒𝑗𝜔) = ∑𝑀
𝑟=0 𝑏[𝑟]𝑒−𝑗𝜔𝑟

∑𝑀
𝑟=0 𝑏[𝑟]𝑒−𝑗𝜔(𝑀−𝑟)

= 𝑒𝑗𝜔𝑀 ∑𝑀
𝑟=0 𝑏[𝑟]𝑒−𝑗𝜔𝑟

∑𝑀
𝑟=0 𝑏[𝑟]𝑒𝑗𝜔𝑟

⇒ |𝐻(𝑒𝑗𝜔)| ≡ 1∀𝜔

Allpass filters have a gain magnitude of 1 even with coefficient errors



explanation

First Order:

𝐻(𝑧) = −𝑝 + 𝑧−1

1 − 𝑝𝑧−1 = −𝑝1 − 𝑝−1𝑧−1

1 − 𝑝𝑧−1

Poles at 𝑝 and zero at 𝑝−1: ‘reflected in unit circle’

Constant distance ratio ∣𝑒𝑗𝜔 − 𝑝∣ = |𝑝|∣𝑒𝑗𝜔 − 1
𝑝 ∣∀𝜔
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Consider the following system:

𝑦[𝑛] = 2𝑥[𝑛] − 3𝑥[𝑛 − 1] + 𝑥[𝑛 − 2]

Where are the poles and zeros located?

A: Zeros at 𝑧 = {2, 0} and {1, 0} Poles at 𝑧 = {0, 0} × 2
B: Zeros at 𝑧 = {2, 0} and {1, 0} Pole at 𝑧 = {0, 0}
C: Zeros at 𝑧 = {1/2, 0} and {1, 0} Poles at 𝑧 = {0, 0} × 2



answer

Consider the following system:

𝑦[𝑛] = 2𝑥[𝑛] − 3𝑥[𝑛 − 1] + 𝑥[𝑛 − 2]

Where are the poles and zeros located?

A: Zeros at 𝑧 = {2, 0} and {1, 0} Poles at 𝑧 = {0, 0} × 2
B: Zeros at 𝑧 = {2, 0} and {1, 0} Pole at 𝑧 = {0, 0}
C: Zeros at 𝑧 = {1/2, 0} and {1, 0} Poles at 𝑧 = {0, 0} × 2



explanation

Solution

𝑦[𝑛] = 2𝑥[𝑛] − 3𝑥[𝑛 − 1] + 𝑥[𝑛 − 2]
𝑌 (𝑧) = 2𝑋(𝑧) − 3𝑧−1𝑋(𝑧) + 𝑧−2𝑋(𝑧)
𝑌 (𝑧) = [𝑧−2 − 3𝑧−1 + 2]𝑋(𝑧)
𝑌 (𝑧) = [(𝑧−1 − 2)(𝑧−1 − 1)]𝑋(𝑧)

−1 0 1
<(z)

−1

0

1

=(
z)

Therefore
Zeros at 𝑧 = {1

2, 0} and {1, 0}

Poles at 𝑧 = {0, 0} and {0, 0}
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Consider the filter:

𝐻(𝑧) = 𝑝[0] + 𝑝[1]𝑧−1 + ⋯ + 𝑝[𝑀]𝑧−𝑀

1 + 𝑑[1]𝑧−1 + ⋯ + 𝑑[𝑁]𝑧−𝑁

Which digital filter
structure is implementing
Direct Form I Transposed?

𝑥[𝑛] 𝑦[𝑛]

𝑥[𝑛 − 𝑀] 𝑦[𝑛 − 𝑁]

−𝑑[1]

−𝑑[2]

−𝑑[𝑁 − 1]

−𝑑[𝑁]

𝑝[0]

𝑝[1]

𝑝[2]

𝑝[𝑀 − 1]

𝑝[𝑀]

𝑧−1

𝑧−1

𝑧−1 𝑧−1

𝑧−1

𝑧−1

A
𝑥[𝑛] 𝑦[𝑛]

𝑥[𝑛 − 𝑀] 𝑦[𝑛 − 𝑁]

𝑝[0]

𝑝[1]

𝑝[2]

𝑝[𝑀 − 1]

𝑝[𝑀]

−𝑑[1]

−𝑑[2]

−𝑑[𝑁 − 1]

−𝑑[𝑁]

𝑧−1

𝑧−1

𝑧−1 𝑧−1

𝑧−1

𝑧−1

B

𝑥[𝑛] 𝑦[𝑛]

𝑥[𝑛 − 𝑀] 𝑦[𝑛 − 𝑁]

𝑝[0]

𝑝[1]

𝑝[2]

𝑝[𝑀 − 1]

𝑝[𝑀]

−𝑑[1]

−𝑑[2]

−𝑑[𝑁 − 1]

−𝑑[𝑁]

𝑧−1

𝑧−1

𝑧−1𝑧−1

𝑧−1

𝑧−1

C



answer
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explanation

Consider the filter:
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1 + 𝑑[1]𝑧−1 + ⋯ + 𝑑[𝑁]𝑧−𝑁

Which digital filter
structure is implementing
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𝑥[𝑛] 𝑦[𝑛]

𝑥[𝑛 − 𝑀] 𝑦[𝑛 − 𝑁]

−𝑑[1]

−𝑑[2]

−𝑑[𝑁 − 1]

−𝑑[𝑁]

𝑝[0]

𝑝[1]

𝑝[2]

𝑝[𝑀 − 1]

𝑝[𝑀]

𝑧−1

𝑧−1
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𝑝[1]

𝑝[2]

𝑝[𝑀 − 1]

𝑝[𝑀]

−𝑑[1]

−𝑑[2]

−𝑑[𝑁 − 1]

−𝑑[𝑁]

𝑧−1

𝑧−1

𝑧−1 𝑧−1

𝑧−1

𝑧−1

Direct Form I Transposed

𝑥[𝑛] 𝑦[𝑛]

𝑥[𝑛 − 𝑀] 𝑦[𝑛 − 𝑁]

𝑝[0]

𝑝[1]

𝑝[2]

𝑝[𝑀 − 1]
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𝑧−1
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Direct Form II



direct form i

If an IIR filter has a transfer function:

𝐻(𝑧) = 𝑃(𝑧)
𝐷(𝑧) = 𝑝[0] + 𝑝[1]𝑧−1 + 𝑝[2]𝑧−2 + ⋯ + 𝑝[𝑀 − 1]𝑧−(𝑀−1) + 𝑝[𝑀]𝑧−𝑀

1 + 𝑑[1]𝑧−1 + 𝑑[2]𝑧−2 + ⋯ + 𝑑[𝑁 − 1]𝑧−(𝑁−1) + 𝑑[𝑁]𝑧−𝑁

Then direct forms use coefficients 𝑑[𝑘] and 𝑝[𝑘] directly. This can be
implemented as a cascade of two filter sections where:

𝐻1(𝑧) = 𝑊(𝑧)
𝑋(𝑧) = 𝑃(𝑧) = 𝑝[0] + 𝑝[1]𝑧−1 + 𝑝[2]𝑧−2 + ⋯ + 𝑝[𝑀 − 1]𝑧−(𝑀−1) + 𝑝[𝑀]𝑧−𝑀

𝐻2(𝑧) = 𝑌 (𝑧)
𝑊(𝑧) = 1

𝐷(𝑧) = 1
1 + 𝑑[1]𝑧−1 + 𝑑[2]𝑧−2 + ⋯ + 𝑑[𝑁 − 1]𝑧−(𝑁−1) + 𝑑[𝑁]𝑧−𝑁

Note that 𝐻1(𝑧) can be seen as an FIR filter and the time-domain
representation of 𝐻2(𝑧) is given by:

𝑦[𝑛] = 𝑤[𝑛] − 𝑑[1]𝑦[𝑛 − 1] − 𝑑[2]𝑦[𝑛 − 2] − ⋯ − 𝑑[𝑁]𝑦[𝑛 − 𝑁]

Direct form I can be viewed as 𝑃 (𝑧) followed by 1
𝐷(𝑧) .



direct form ii / transposed forms

Direct form II implements 1
𝐷(𝑧) followed by 𝑃(𝑧)

Transposed Forms

It is also possible to convert any structure into an equivalent
transposed form. This is achieved in the following way:

1: Reverse direction of each interconnection
2: Reverse direction of each multiplier
3: Change junctions to adders and vice-versa
4: Interchange the input and output signals

Check: A valid structure must never have any feedback loops that
don’t go through a delay (𝑧−1 block).



go to www.menti.com and use the code 70 44 50

An FIR filter 𝐵(𝑒𝑗𝜔) is determined by the zeros of

𝑧𝑀𝐵(𝑧) = ∑𝑀
𝑟=0 𝑏[𝑀 − 𝑟]𝑧𝑟

−1 0 1
<(z)

−1

0

1

=(
z)

1

−1 0 1
<(z)

−1

0

1

=(
z)

2

−1 0 1
<(z)

−1

0

1

=(
z)

3

Which FIR filter has symmetric coefficients 𝑏[𝑛]?

A: 1 and 3
B: 2 and 3
C: 3



answer

An FIR filter 𝐵(𝑒𝑗𝜔) is determined by the zeros of
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Which FIR filter has symmetric coefficients 𝑏[𝑛]?

A: 1 and 3
B: 2 and 3
C: 3



explanation

Symmetric properties:

Real 𝑏[𝑛] ⇒ conjugate zero pairs: 𝑧 ⇒ 𝑧∗

Symmetric: 𝑏[𝑛] = 𝑏[𝑀 − 𝑛] ⇒ reciprocal zero pairs: 𝑧 ⇒ 𝑧−1

Real & Symmetric 𝑏[𝑛] ⇒ conjugate and reciprocal groups of
four (else pairs on the real axis)



explanation

Real

[1, -1.28, 0.64]

−1 0 1
<(z)

−1

0

1

=(
z)

Symmetric

[1, -1.64 + 0.27j, 1]

−1 0 1
<(z)

−1

0

1

=(
z)

Real & Symmetric

[1,-3.28, 4.7625, -3.28, 1]

−1 0 1
<(z)

−1

0

1

=(
z)

−2 0 2
ω

0

1

2

3

|H
|

−2 0 2
ω

0

1

2

3
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−2 0 2
ω

0
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explanation

In all of the proofs below, we assume that 𝑧 = 𝑧0 is a root of 𝐵(𝑧) so
that 𝐵(𝑧0) = ∑𝑀

𝑟=0 𝑏[𝑟]𝑧−𝑟
0 = 0 and then we prove that this implies

that other values of 𝑧 also satisfy 𝐵(𝑧) = 0.

(1) Real 𝑏[𝑛]

𝐵(𝑧∗
0) = ∑𝑀

𝑟=0 𝑏[𝑟](𝑧∗
0)−𝑟

= ∑𝑀
𝑟=0 𝑏∗[𝑟](𝑧∗

0)−𝑟 sine 𝑏[𝑟] is real

= ( ∑𝑀
𝑟=0 𝑏[𝑟]𝑧−𝑟

0 )
∗

take complex conjugate

= 0∗ = 0 since 𝐵(𝑧0) = 0



explanation

In all of the proofs below, we assume that 𝑧 = 𝑧0 is a root of 𝐵(𝑧) so
that 𝐵(𝑧0) = ∑𝑀

𝑟=0 𝑏[𝑟]𝑧−𝑟
0 = 0 and then we prove that this implies

that other values of 𝑧 also satisfy 𝐵(𝑧) = 0.

(2) Symmetric: 𝑏[𝑛] = 𝑏[𝑀 − 𝑛]

𝐵(𝑧−1
0 ) = ∑𝑀

𝑟=0 𝑏[𝑟]𝑧𝑟
0

= ∑𝑀
𝑛=0 𝑏[𝑀 − 𝑛]𝑧𝑀−𝑛

0 substitute 𝑟 = 𝑀 − 𝑛
= 𝑧𝑀

0 ∑𝑀
𝑛=0 𝑏[𝑀 − 𝑛]𝑧−𝑛

0 take out 𝑧𝑀
0 factor

= 𝑧𝑀
0 ∑𝑀

𝑛=0 𝑏[𝑛]𝑧−𝑛
0 since 𝑏[𝑀 − 𝑛] = 𝑏[𝑛]

= 𝑧𝑀
0 × 0 = 0 since 𝐵(𝑧0) = 0
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Consider the following Quadrature Mirror Filterbank (QMF):

𝐻0(𝑧) ↓ 2 ↑ 2 𝐹0(𝑧)

𝐻1(𝑧) ↓ 2 ↑ 2 𝐹1(𝑧) +

𝑥[𝑛] 𝑥𝑜[𝑛]

𝑥1[𝑛] ̂𝑥[𝑛]

𝑦0[𝑛]

𝑦1[𝑛]

𝑣0[𝑛]

𝑣1[𝑛]

Which can be implemented using polyphase QMF:

↓ 2 𝐸0(𝑧) + + 𝐸1(𝑧) ↑ 2

𝑧−1 𝑧−1

↓ 2 𝐸1(𝑧) + + 𝐸0(𝑧) ↑ 2

𝑥[𝑛]

̂𝑥[𝑛]
− −

What is the computational saving achieved by the polyphase QMF?

A: A factor of 2
B: A factor of 4
C: A factor of 8



answer

Consider the following Quadrature Mirror Filterbank (QMF):

𝐻0(𝑧) ↓ 2 ↑ 2 𝐹0(𝑧)

𝐻1(𝑧) ↓ 2 ↑ 2 𝐹1(𝑧) +

𝑥[𝑛] 𝑥𝑜[𝑛]

𝑥1[𝑛] ̂𝑥[𝑛]

𝑦0[𝑛]

𝑦1[𝑛]

𝑣0[𝑛]

𝑣1[𝑛]

Which can be implemented using polyphase QMF:

↓ 2 𝐸0(𝑧) + + 𝐸1(𝑧) ↑ 2

𝑧−1 𝑧−1

↓ 2 𝐸1(𝑧) + + 𝐸0(𝑧) ↑ 2

𝑥[𝑛]

̂𝑥[𝑛]
− −

What is the computational saving achieved by the polyphase QMF?

A: A factor of 2
B: A factor of 4
C: A factor of 8



explanation

𝐻0(𝑧) ↓ 2 ↑ 2 𝐹0(𝑧)

𝐻1(𝑧) ↓ 2 ↑ 2 𝐹1(𝑧) +

𝑥[𝑛] 𝑥𝑜[𝑛]

𝑥1[𝑛] ̂𝑥[𝑛]

𝑦0[𝑛]

𝑦1[𝑛]

𝑣0[𝑛]

𝑣1[𝑛]

𝐸0(𝑧2) + ↓ 2 ↑ 2 + 𝐸1(𝑧2)

𝑧−1 𝑧−1

𝐸1(𝑧2) + ↓ 2 ↑ 2 + 𝐸0(𝑧2) +

𝑥[𝑛]

̂𝑥[𝑛]
− −

↓ 2 𝐸0(𝑧) + + 𝐸1(𝑧) ↑ 2

𝑧−1 𝑧−1

↓ 2 𝐸1(𝑧) + + 𝐸0(𝑧) ↑ 2

𝑥[𝑛]

̂𝑥[𝑛]
− −
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Consider the following Quadrature Mirror Filterbank (QMF):

𝐻0(𝑧) ↓ 2 ↑ 2 𝐹0(𝑧)

𝐻1(𝑧) ↓ 2 ↑ 2 𝐹𝑒(𝑧) +

𝑥[𝑛] 𝑥0[𝑛]

𝑥1[𝑛] ̂𝑥[𝑛]

𝑦0[𝑛]

𝑦1[𝑛]

𝑣0[𝑛]

𝑣1[𝑛]

Impulse response ℎ0[𝑛]
Which is the correct impulse response for ℎ1[𝑛]?

A B C



answer
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Which is the correct impulse response for ℎ1[𝑛]?

A B C



explanation

Magnitude responses:
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ℎ1[𝑛] = ℎ0[𝑛] ℎ1[𝑛] = (−1)𝑛ℎ0[𝑛] ℎ1[𝑛] = ℎ0[𝑁 − 1 − 𝑛]



explanation

Proof:

𝜋/2 𝜋

1 |𝐻0(𝑒𝑗𝜔)| |𝐻1(𝑒𝑗𝜔)|

The relationship between 𝐻0(𝑧) and 𝐻1(𝑧) when they are
quadrature mirror filters is 𝐻1(𝑧) = 𝐻0(−𝑧).

The corresponding relationship between the impulse responses of
these filters is ℎ1[𝑛] = (−1)𝑛ℎ0[𝑛].

𝐻1(𝑧) = 𝐻0(−𝑧) =
∞

∑
𝑛=−∞

ℎ0[𝑛](−𝑧)−𝑛 =
∞

∑
𝑛=−∞

ℎ0[𝑛](−1)𝑛𝑧−𝑛



next week

There will be a class next Thursday (Week 9 - 28/11/2019)

Room: 403A/B

Time: 15:00 to 16:00


