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PEER INSTRUCTION

Method:
1. Conceptual question posed - students think quietly on their
own and report initial answers on Mentimeter (3 mins)
2: Students discuss their answers in small groups (2 mins)
3: Explanation/discussion of correct answer (3 mins)
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Consider the following statements:
1. Allpass filters have mirror image numerator and denominator
coefficients

2: In an allpass filter, the zeros are the poles reflected in the unit
circle

3: Allpass filters have a gain magnitude of 1 even with coefficient
errors

Which of these statements are true?
A1
B: 1Tand 2
C: All 3 of them



ANSWER
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1. Allpass filters have mirror image numerator and denominator
coefficients

2: In an allpass filter, the zeros are the poles reflected in the unit
circle

3: Allpass filters have a gain magnitude of 1 even with coefficient
errors

Which of these statements are true?
A1
B: 1Tand 2
C: All 3 of them



EXPLANATION

Allpass filters have mirror image numerator and denominator
coefficients

bln]=a[N —n] < B(z)=2zNA(z)

M . M .

) blrje—vr . blrle—I«r

H(ejw) _ %T‘:O [ ] . — oM ZT;[O [ ] ‘
32, blr]eawM=n) 2o blrlerr

= |H(e¥)| = 1Vw

Allpass filters have a gain magnitude of 1 even with coefficient errors



EXPLANATION

First Order:

—p+ 2zt 1—p izt
H(Z) = 1 _pz—l =—p I _pz—l

Poles at p and zero at p~': ‘reflected in unit circle’

Constant distance ratio | — p| = [p|[e™ — L|Vw
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Consider the following system:

y[n] = 2z[n] — 3z[n — 1] + x[n — 2]

Where are the poles and zeros located?
A: Zeros at z = {2,0} and {1,0} Poles at z = {0,0} x 2

B: Zeros at z = {2,0} and {1,0} Pole at z = {0, 0}
C: Zerosat z={1/2,0} and {1,0} Poles at z={0,0} x 2



ANSWER
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Where are the poles and zeros located?
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EXPLANATION

Solution
y[n] = 2z[n] — 3z[n — 1] + z[n — 2] I
Y(2)=2X(2) =32 X(2) +22X(2) o | /%
Y(z)=[22 =321 + 2] X(2) &
Y(2) =[(z71 =2)(zt = )] X(2) e
o
Therefore

Zeros at z = {%,0} and {1,0}
Poles at z = {0,0} and {0,0}
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Consider the filter:

plO] +p[1]z ! + -+ p[M]z M
1+d[1]z"t+ -+ d[N]z=N

H(z)=

Which digital filter
structure is implementing

Direct Form | Transposed? S —d[N] | *
z[n — M) y[n — N|

L S ]

x[n]

—av) 17 1 e
z[n — M] ) i y[n — N




ANSWER

Consider the filter:

 p[0] 4 p1]z ! + o+ p[M]zM
T Itdl)z 4+ d[NzN

H(z)
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EXPLANATION

Consider the filter: p[0]
H(z) _ p[O] +p[l]z_1 +'“+p[M]Z_M P[] —d[1]
1+d[1]z7t + -+ d[N]z—N
p[2] —d[2]
Which digital filter : RN o
o e . Vp[M—1]! 1 —1
structure is implementing " ]1\ [
i ? 27t _an 17!
Direct Form | Transposed? o a1] b L
Direct Form |
p[0] ] (0] ol
p[1] —d] o
pl2] —dp2] = op2)
av -1 Mo v 1] .prl I

P ) 21 N 271
z[n—JW]I N I I Gl Iy[n—N] s — M]I el i) Iy[n N

Direct Form | Transposed Direct Form |l




DIRECT FORM I

If an IIR filter has a transfer function:

H(z) = P(z) _ pl0]+p[l]z~! + p[2]272 + - + p[M — 1)z~ M= 4 p[M]z~M
“TDGE T 1+dl)+d2]z2 + -+ d[N — 1]z=-D 1 d[N]=—N

Then direct forms use coefficients d[k] and p[k] directly. This can be
implemented as a cascade of two filter sections where:

H,(2) = X() ~ P(z) = p[0] + p[1]z~ +p[2]lz 2 4+ p[M — 1]z~ M=V 4 p[M]z~M

Y (z) 1 1
 W(2) D(2) 1+d[l]zl+d[2]z72 + -+ d[N —1]z=V-1 4 d[N]z—N

Note that H,(z) can be seen as an FIR filter and the time-domain
representation of Hy(z) is given by:

y[n] = win] — d[1]y[n — 1] — d[2ly[n — 2] — - — d[N]y[n — N]

Direct form | can be viewed as P(z) followed by 5.



DIRECT FORM Il / TRANSPOSED FORMS

Direct form Il implements i followed by P(z)

Transposed Forms
It is also possible to convert any structure into an equivalent
transposed form. This is achieved in the following way:

1. Reverse direction of each interconnection

2: Reverse direction of each multiplier

3: Change junctions to adders and vice-versa

4: Interchange the input and output signals

Check: A valid structure must never have any feedback loops that
don’t go through a delay (z~* block).
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An FIR filter B(e/*) is determined by the zeros of

r=0
o o E R .

o o a
= o § 0 }
5 0 x 5 0 x 5 0 x |

o o/

. “C el

—1{ e —1{ T —1 e g
-1 0 1 -1 0 1 -1 0 1

R(z) R(z) R(z)

Which FIR filter has symmetric coefficients b[n|?

A: Tand 3
B: 2and 3
C 3



ANSWER

An FIR filter B(e/*) is determined by the zeros of

r=0
IE I v e -
o / oY o™
& O [ i = }
50 * 2 I U 5 " <
o o/
. . gl el
—1{ e -1 T —1 T
-1 0 1 -1 0 1 -1 0 1
R(z) R(z) R(z)
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C 3



EXPLANATION

Symmetric properties:

Real b[n] = conjugate zero pairs: z = z*
Symmetric: b[n] = b[M — n] = reciprocal zero pairs: z = 2!

Real & Symmetric b[n] = conjugate and reciprocal groups of
four (else pairs on the real axis)



EXPLANATION

Real

[1, -1.28, 0.64]

Symmetric

[1, 1.64 + 027}, 1]

Real & Symmetric

[1,-3.28, 4.7625, -3.28, 1]

1

o S R | R . .
[ShY o o
D = 4
0 X 5 0 X 5 0 X
o/ o/
e e I —1 e
-1 0 -1 0 -1 0 1
R(z) R(z) R(z)
10
B B
5
— 0 ) 0 E— 0
w w




EXPLANATION

In all of the proofs below, we assume that z = z, is a root of B(z) so
that B(z,) = Zi\io b[r]z," = 0 and then we prove that this implies
that other values of z also satisfy B(z) = 0.

(1) Real b[n]

= Zﬁo b*[r](25) 7" sine b[r] is real
= (ZM b[r]zar) take complex conjugate

=0"=0 since B(z,) =0



EXPLANATION

In all of the proofs below, we assume that z = z, is a root of B(z) so
that B(z,) = Ei‘io blr]zo" = 0 and then we prove that this implies
that other values of z also satisfy B(z) = 0.

(2) Symmetric: b[n] = b|M — n]
_ M ,
Blzy') = 22, blrleg
= Zﬁio b[M —nlzh— substitute r = M —n
=z Zfio b[M —nlzy™  take out 2)! factor

=2 blnla” since b[M — n] = b[n]
=z x0=0 since B(z,) =0
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Consider the following Quadrature Mirror Filterbank (QMF):

z[n] |H_<Z)|za[n] ,¢_2| voln] |T_2|yo[n]
I I B L

H(2) ,[n] ,i_2| vy[n] ,T_Qli’h[”]

What is the computational saving achieved by the polyphase QMF?

A: A factor of 2
B: A factor of 4
C: Afactor of 8



ANSWER
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z[n] |H_<Z)|za[n] ,¢_2| voln] |T_2|yo[n]
I I B L

P )y e p

What is the computational saving achieved by the polyphase QMF?
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EXPLANATION

aln] Tl ) bl ] el
Hy(2) L2 12

() z1["],‘L_2| vy[n] ,?lyl["]
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Consider the following Quadrature Mirror Filterbank (QMF):
L.
1 | | S

Impulse response hg[n]

Which is the correct impulse response for h,[n]?




ANSWER
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EXPLANATION

Magnitude responses:

1.0 1.0 1.0
] ] ]
0.5 0.5 0.5
00 1 2 3 005 1 2 3 00 1 2 3
w w w




EXPLANATION

Proof:

/2 ™

The relationship between Hy(z) and H,(z) when they are
quadrature mirror filters is H,(z) = Hy(—2).

The corresponding relationship between the impulse responses of
these filters is hq[n] = (=1)"hy[n].

o0 o0

Hy(z) = Hy(=2) = Y holn)(=2)" = > holn](=1)"="

n=—oo n=—oo



NEXT WEEK

There will be a class next Thursday (Week 9 - 28/11/2019)

Room: 403A/B
Time: 15:00 to 16:00



