Imperial College
 London

REVISION CLASS 1

Aidan Hogg - 21 November 2019
ELEC96010 (EE3-07): Digital Signal Processing
Department of Electrical and Electronic Engineering

PEER INSTRUCTION

Method:
1: Conceptual question posed - students think quietly on their own and report initial answers on Mentimeter (3 mins)
2: Students discuss their answers in small groups (2 mins)
3: Explanation/discussion of correct answer (3 mins)

Consider the following statements:
1: Allpass filters have mirror image numerator and denominator coefficients
2: In an allpass filter, the zeros are the poles reflected in the unit circle
3: Allpass filters have a gain magnitude of 1 even with coefficient errors

Which of these statements are true?
A: 1
B: 1 and 2
C: All 3 of them

ANSWER

Consider the following statements:
1: Allpass filters have mirror image numerator and denominator coefficients
2: In an allpass filter, the zeros are the poles reflected in the unit circle
3: Allpass filters have a gain magnitude of 1 even with coefficient errors

Which of these statements are true?
A: 1
B: 1 and 2
C: All 3 of them

EXPLANATION

Allpass filters have mirror image numerator and denominator coefficients

$$
\begin{aligned}
& b[n]=a[N-n] \Leftrightarrow B(z)=z^{-N} A\left(z^{-1}\right) \\
& \quad H\left(e^{j} \omega\right)=\frac{\sum_{r=0}^{M} b[r] e^{-j \omega r}}{\sum_{r=0}^{M} b[r] e^{-j \omega(M-r)}}=e^{j \omega M} \frac{\sum_{r=0}^{M} b[r] e^{-j \omega r}}{\sum_{r=0}^{M} b[r] e^{j \omega r}} \\
& \Rightarrow \quad\left|H\left(e^{j \omega}\right)\right| \equiv 1 \forall \omega
\end{aligned}
$$

Allpass filters have a gain magnitude of 1 even with coefficient errors

EXPLANATION

First Order:

$$
H(z)=\frac{-p+z^{-1}}{1-p z^{-1}}=-p \frac{1-p^{-1} z^{-1}}{1-p z^{-1}}
$$

Poles at p and zero at p^{-1} : 'reflected in unit circle' Constant distance ratio $\left|e^{j \omega}-p\right|=|p|\left|e^{j \omega}-\frac{1}{p}\right| \forall \omega$

Consider the following system:

$$
y[n]=2 x[n]-3 x[n-1]+x[n-2]
$$

Where are the poles and zeros located?

$$
\begin{array}{ll}
\text { A: Zeros at } z=\{2,0\} \text { and }\{1,0\} & \text { Poles at } z=\{0,0\} \times 2 \\
\text { B: Zeros at } z=\{2,0\} \text { and }\{1,0\} & \text { Pole at } z=\{0,0\} \\
\text { C: Zeros at } z=\{1 / 2,0\} \text { and }\{1,0\} & \text { Poles at } z=\{0,0\} \times 2
\end{array}
$$

ANSWER

Consider the following system:

$$
y[n]=2 x[n]-3 x[n-1]+x[n-2]
$$

Where are the poles and zeros located?
A: Zeros at $z=\{2,0\}$ and $\{1,0\} \quad$ Poles at $z=\{0,0\} \times 2$
B: Zeros at $z=\{2,0\}$ and $\{1,0\} \quad$ Pole at $z=\{0,0\}$
C: Zeros at $z=\{1 / 2,0\}$ and $\{1,0\} \quad$ Poles at $z=\{0,0\} \times 2$

EXPLANATION

Solution

$$
\begin{aligned}
y[n] & =2 x[n]-3 x[n-1]+x[n-2] \\
Y(z) & =2 X(z)-3 z^{-1} X(z)+z^{-2} X(z) \\
Y(z) & =\left[z^{-2}-3 z^{-1}+2\right] X(z) \\
Y(z) & =\left[\left(z^{-1}-2\right)\left(z^{-1}-1\right)\right] X(z)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \text { Zeros at } z=\left\{\frac{1}{2}, 0\right\} \text { and }\{1,0\} \\
& \text { Poles at } z=\{0,0\} \text { and }\{0,0\}
\end{aligned}
$$

GO TO WWW.MENTI.COM AND USE THE CODE 704450

Consider the filter:
$H(z)=\frac{p[0]+p[1] z^{-1}+\cdots+p[M] z^{-M}}{1+d[1] z^{-1}+\cdots+d[N] z^{-N}}$
Which digital filter
structure is implementing Direct Form I Transposed?

ANSWER

Consider the filter:
$H(z)=\frac{p[0]+p[1] z^{-1}+\cdots+p[M] z^{-M}}{1+d[1] z^{-1}+\cdots+d[N] z^{-N}}$
Which digital filter
structure is implementing Direct Form I Transposed?

EXPLANATION

Consider the filter:
$H(z)=\frac{p[0]+p[1] z^{-1}+\cdots+p[M] z^{-M}}{1+d[1] z^{-1}+\cdots+d[N] z^{-N}}$
Which digital filter
structure is implementing Direct Form I Transposed?

DIRECT FORM I

If an IIR filter has a transfer function:

$$
H(z)=\frac{P(z)}{D(z)}=\frac{p[0]+p[1] z^{-1}+p[2] z^{-2}+\cdots+p[M-1] z^{-(M-1)}+p[M] z^{-M}}{1+d[1] z^{-1}+d[2] z^{-2}+\cdots+d[N-1] z^{-(N-1)}+d[N] z^{-N}}
$$

Then direct forms use coefficients $d[k]$ and $p[k]$ directly. This can be implemented as a cascade of two filter sections where:

$$
\begin{aligned}
& H_{1}(z)=\frac{W(z)}{X(z)}=P(z)=p[0]+p[1] z^{-1}+p[2] z^{-2}+\cdots+p[M-1] z^{-(M-1)}+p[M] z^{-M} \\
& H_{2}(z)=\frac{Y(z)}{W(z)}=\frac{1}{D(z)}=\frac{1}{1+d[1] z^{-1}+d[2] z^{-2}+\cdots+d[N-1] z^{-(N-1)}+d[N] z^{-N}}
\end{aligned}
$$

Note that $H_{1}(z)$ can be seen as an FIR filter and the time-domain representation of $\mathrm{H}_{2}(z)$ is given by:

$$
y[n]=w[n]-d[1] y[n-1]-d[2] y[n-2]-\cdots-d[N] y[n-N]
$$

Direct form I can be viewed as $P(z)$ followed by $\frac{1}{D(z)}$.

Direct form II implements $\frac{1}{D(z)}$ followed by $P(z)$

Transposed Forms

It is also possible to convert any structure into an equivalent transposed form. This is achieved in the following way:

1: Reverse direction of each interconnection
2: Reverse direction of each multiplier
3: Change junctions to adders and vice-versa
4: Interchange the input and output signals

Check: A valid structure must never have any feedback loops that don't go through a delay (z^{-1} block).

GO TO WWW.MENTI.COM AND USE THE CODE 704450

An FIR filter $B\left(e^{j \omega}\right)$ is determined by the zeros of

$$
z^{M} B(z)=\sum_{r=0}^{M} b[M-r] z^{r}
$$

Which FIR filter has symmetric coefficients $b[n]$?
A: 1 and 3
B: 2 and 3
C: 3

ANSWER

An FIR filter $B\left(e^{j \omega}\right)$ is determined by the zeros of

$$
z^{M} B(z)=\sum_{r=0}^{M} b[M-r] z^{r}
$$

Which FIR filter has symmetric coefficients $b[n]$?
A: 1 and 3
B: 2 and 3
C: 3

EXPLANATION

Symmetric properties:

$$
\text { Real } b[n] \Rightarrow \text { conjugate zero pairs: } z \Rightarrow z^{*}
$$

Symmetric: $b[n]=b[M-n] \Rightarrow$ reciprocal zero pairs: $z \Rightarrow z^{-1}$

Real \& Symmetric $b[n] \Rightarrow$ conjugate and reciprocal groups of four (else pairs on the real axis)

EXPLANATION

Real

Symmetric
$[1,-1.64+0.27 \mathrm{j}, 1]$

Real \& Symmetric

$$
[1,-3.28,4.7625,-3.28,1]
$$

EXPLANATION

In all of the proofs below, we assume that $z=z_{0}$ is a root of $B(z)$ so that $B\left(z_{0}\right)=\sum_{r=0}^{M} b[r] z_{0}^{-r}=0$ and then we prove that this implies that other values of z also satisfy $B(z)=0$.
(1) Real $b[n]$

$$
\begin{aligned}
B\left(z_{0}^{*}\right) & =\sum_{r=0}^{M} b[r]\left(z_{0}^{*}\right)^{-r} & & \\
& =\sum_{r=0}^{M} b^{*}[r]\left(z_{0}^{*}\right)^{-r} & & \text { sine } b[r] \text { is real } \\
& =\left(\sum_{r=0}^{M} b[r] z_{0}^{-r}\right)^{*} & & \text { take complex conjugate } \\
& =0^{*}=0 & & \text { since } B\left(z_{0}\right)=0
\end{aligned}
$$

EXPLANATION

In all of the proofs below, we assume that $z=z_{0}$ is a root of $B(z)$ so that $B\left(z_{0}\right)=\sum_{r=0}^{M} b[r] z_{0}^{-r}=0$ and then we prove that this implies that other values of z also satisfy $B(z)=0$.
(2) Symmetric: $b[n]=b[M-n]$

$$
\begin{aligned}
B\left(z_{0}^{-1}\right) & =\sum_{r=0}^{M} b[r] z_{0}^{r} & & \\
& =\sum_{n=0}^{M} b[M-n] z_{0}^{M-n} & & \text { substitute } r=M-n \\
& =z_{0}^{M} \sum_{n=0}^{M} b[M-n] z_{0}^{-n} & & \text { take out } z_{0}^{M} \text { factor } \\
& =z_{0}^{M} \sum_{n=0}^{M} b[n] z_{0}^{-n} & & \text { since } b[M-n]=b[n] \\
& =z_{0}^{M} \times 0=0 & & \text { since } B\left(z_{0}\right)=0
\end{aligned}
$$

GO TO WWW.MENTI.COM AND USE THE CODE 704450

Consider the following Quadrature Mirror Filterbank (QMF):

Which can be implemented using polyphase QMF:

What is the computational saving achieved by the polyphase QMF?
A: A factor of 2
B: A factor of 4
C: A factor of 8

ANSWER

Consider the following Quadrature Mirror Filterbank (QMF):

Which can be implemented using polyphase QMF:

What is the computational saving achieved by the polyphase QMF?
A: A factor of 2
B: A factor of 4
C: A factor of 8

EXPLANATION

GO TO WWW.MENTI.COM AND USE THE CODE 704450

Consider the following Quadrature Mirror Filterbank (QMF):

Impulse response $h_{0}[n]$
Which is the correct impulse response for $h_{1}[n]$?

A

B

C

ANSWER

Consider the following Quadrature Mirror Filterbank (QMF):

Impulse response $h_{0}[n]$
Which is the correct impulse response for $h_{1}[n]$?

A

B

C

EXPLANATION

Magnitude responses:

$$
h_{1}[n]=h_{0}[n]
$$

$h_{1}[n]=(-1)^{n} h_{0}[n]$
$h_{1}[n]=h_{0}[N-1-n]$

EXPLANATION

Proof:

The relationship between $H_{0}(z)$ and $H_{1}(z)$ when they are quadrature mirror filters is $H_{1}(z)=H_{0}(-z)$.

The corresponding relationship between the impulse responses of these filters is $h_{1}[n]=(-1)^{n} h_{0}[n]$.

$$
H_{1}(z)=H_{0}(-z)=\sum_{n=-\infty}^{\infty} h_{0}[n](-z)^{-n}=\sum_{n=-\infty}^{\infty} h_{0}[n](-1)^{n} z^{-n}
$$

NEXT WEEK

There will be a class next Thursday (Week 9-28/11/2019)

Room: 403A/B
Time: 15:00 to 16:00

