Imperial College London

MODULE 3 CLASS

Aidan Hogg - 31 October 2019
ELEC96010 (EE3-07): Digital Signal Processing
Department of Electrical and Electronic Engineering

PEER INSTRUCTION

Method:
1: Conceptual question posed - students think quietly on their own and report initial answers on Mentimeter (3 mins)
2: Students discuss their answers in small groups (2 mins)
3: Explanation/discussion of correct answer (3 mins)

The normal arithmetic rules for multiplication are:

Identity: $x[n] * \delta[n]=x[n]$
Commutative: $x[n] * v[n]=v[n] * x[n]$
Associative: $x[n] *(v[n] * w[n])=(x[n] * v[n]) * w[n]$
Distributive: $x[n] *(\alpha v[n]+\beta w[n])=(x[n] * \alpha v[n])+(x[n] * \beta w[n])$

What normal arithmetic rules does Convolution obey?
A: Identity and commutative
B: Identity, commutative and associative
C: All of them

ANSWER

The normal arithmetic rules for multiplication are:

Identity: $x[n] * \delta[n]=x[n]$
Commutative: $x[n] * v[n]=v[n] * x[n]$
Associative: $x[n] *(v[n] * w[n])=(x[n] * v[n]) * w[n]$
Distributive: $x[n] *(\alpha v[n]+\beta w[n])=(x[n] * \alpha v[n])+(x[n] * \beta w[n])$

What normal arithmetic rules does Convolution obey?
A: Identity and commutative
B: Identity, commutative and associative
C: All of them

GO TO WWW.MENTI.COM AND USE THE CODE 936557

Consider the finite length signals

$$
\begin{gathered}
x[0], \cdots, x[N-1] \\
y[0], \cdots, y[M-1] \quad \text { where } M<N
\end{gathered}
$$

When

$$
\begin{aligned}
v[n] & =x[n] * y[n] \\
w[n] & =x[n] \circledast_{N} y[n]
\end{aligned}
$$

State the values of n for which $v[n]=w[n]$?
A: $0 \leq n \leq N-1$
B: $M-1 \leq n \leq N-1$
C: $N-M \leq n \leq N-1$

ANSWER

Consider the finite length signals

$$
\begin{array}{r}
x[0], \cdots, x[N-1] \\
y[0], \cdots, y[M-1] \quad \text { where } M<N
\end{array}
$$

When

$$
\begin{aligned}
v[n] & =x[n] * y[n] \\
w[n] & =x[n] \circledast_{N} y[n]
\end{aligned}
$$

State the values of n for which $v[n]=w[n]$?
A: $0 \leq n \leq N-1$
B: $M-1 \leq n \leq N-1$
C: $N-M \leq n \leq N-1$

EXPLANATION

Linear Convolution

Convolution sum: $\sum_{k=0}^{M-1} h[k] x[k-n]$
thus $y[n]$ has only $M+N-1$ non-zero values.

EXPLANATION

Circular Convolution

$$
\xrightarrow[\boldsymbol{\downarrow}]{\boldsymbol{q}^{w[0]}} \cdots \xrightarrow[\boldsymbol{\iota}]{\boldsymbol{\bullet}}
$$

Circular Convolution: $y \circledast_{N}[n]=\sum_{k=0}^{M-1} x[k] h\left[(n-k)_{\bmod N}\right]$ $y \circledast_{N}[n]$ has period $N \Rightarrow y \circledast_{N}[n]$ has N distinct values

Only the first $M-1$ values are affected by the circular repetition:

$$
y \circledast_{N}[n]=y[n] \text { for } M-1 \leq n \leq N-1
$$

If we append $M-1$ zeros (or more) onto $x[n]$, then the circular repetition has no effect at all

GO TO WWW.MENTI.COM AND USE THE CODE 936557

You can also calculate the convolution is using a matrix, where the circular convolution $y[n]=x[n] * h[n]$ is the equivalent to:

A:

$$
\left[\begin{array}{cccc}
x[0] & x[3] & x[2] & x[1] \\
x[1] & x[0] & x[3] & x[2] \\
x[2] & x[1] & x[0] & x[3] \\
x[3] & x[2] & x[1] & x[0]
\end{array}\right]\left[\begin{array}{l}
h[0] \\
h[1] \\
h[2] \\
h[3]
\end{array}\right]=\left[\begin{array}{l}
y[0] \\
y[1] \\
y[2] \\
y[3]
\end{array}\right]
$$

B:

$$
\left[\begin{array}{cccc}
x[0] & x[1] & x[2] & x[3] \\
x[1] & x[2] & x[3] & x[0] \\
x[2] & x[3] & x[0] & x[1] \\
x[3] & x[0] & x[1] & x[2]
\end{array}\right]\left[\begin{array}{l}
h[0] \\
h[1] \\
h[2] \\
h[3]
\end{array}\right]=\left[\begin{array}{l}
y[0] \\
y[1] \\
y[2] \\
y[3]
\end{array}\right]
$$

C:

$$
\left[\begin{array}{cccc}
x[0] & x[1] & x[2] & x[3] \\
x[1] & x[0] & x[3] & x[2] \\
x[2] & x[3] & x[0] & x[1] \\
x[3] & x[2] & x[1] & x[0]
\end{array}\right]\left[\begin{array}{l}
h[0] \\
h[1] \\
h[2] \\
h[3]
\end{array}\right]=\left[\begin{array}{c}
y[0] \\
y[1] \\
y[2] \\
y[3]
\end{array}\right]
$$

ANSWER

You can also calculate the convolution is using a matrix, where the circular convolution $y[n]=x[n] * h[n]$ is the equivalent to:

A:

$$
\left[\begin{array}{llll}
x[0] & x[3] & x[2] & x[1] \\
x[1] & x[0] & x[3] & x[2] \\
x[2] & x[1] & x[0] & x[3] \\
x[3] & x[2] & x[1] & x[0]
\end{array}\right]\left[\begin{array}{l}
h[0] \\
h[1] \\
h[2] \\
h[3]
\end{array}\right]=\left[\begin{array}{l}
y[0] \\
y[1] \\
y[2] \\
y[3]
\end{array}\right]
$$

B:

$$
\left[\begin{array}{cccc}
x[0] & x[1] & x[2] & x[3] \\
x[1] & x[2] & x[3] & x[0] \\
x[2] & x[3] & x[0] & x[1] \\
x[3] & x[0] & x[1] & x[2]
\end{array}\right]\left[\begin{array}{l}
h[0] \\
h[1] \\
h[2] \\
h[3]
\end{array}\right]=\left[\begin{array}{c}
y[0] \\
y[1] \\
y[2] \\
y[3]
\end{array}\right]
$$

C:

$$
\left[\begin{array}{cccc}
x[0] & x[1] & x[2] & x[3] \\
x[1] & x[0] & x[3] & x[2] \\
x[2] & x[3] & x[0] & x[1] \\
x[3] & x[2] & x[1] & x[0]
\end{array}\right]\left[\begin{array}{l}
h[0] \\
h[1] \\
h[2] \\
h[3]
\end{array}\right]=\left[\begin{array}{c}
y[0] \\
y[1] \\
y[2] \\
y[3]
\end{array}\right]
$$

EXPLANATION

Circulant Matrix Method

One way to calculate the convolution is using a circulant matrix, where the circular convolution $y[n]=x[n] \circledast h[n]$ is the equivalent to:

$$
\left[\begin{array}{llll}
x[0] & x[3] & x[2] & x[1] \\
x[1] & x[0] & x[3] & x[2] \\
x[2] & x[1] & x[0] & x[3] \\
x[3] & x[2] & x[1] & x[0]
\end{array}\right]\left[\begin{array}{l}
h[0] \\
h[1] \\
h[2] \\
h[3]
\end{array}\right]=\left[\begin{array}{l}
y[0] \\
y[1] \\
y[2] \\
y[3]
\end{array}\right]
$$

Where $h[n]$ and $x[n]$ are made up of 4 samples.

EXPLANATION

Simple Trick Method

There is a also a very simple trick that can be used to calculate the convolution:

Overlap save for $x[0: N-1]$ with $h[0: M-1]$ is defined as:
I: chop $x[n]$ into $\frac{N}{K}$ overlapping chunks of length $K+M-1$
II: \circledast_{K+M-1} each chunk with $h[n]$
III: discard first $M-1$ from each chunk
IV: concatenate to make $y[n]$

What will be the output length of $y[n]$
A: $N+M-1$
B: $N-1$
C: N

ANSWER

Overlap save for $x[0: N-1]$ with $h[0: M-1]$ is defined as:
I: chop $x[n]$ into $\frac{N}{K}$ overlapping chunks of length $K+M-1$
II: \circledast_{K+M-1} each chunk with $h[n]$
III: discard first $M-1$ from each chunk
IV: concatenate to make $y[n]$

What will be the output length of $y[n]$
A: $N+M-1$
B: $N-1$
C: N

EXPLANATION

Overlap Add

I: chop $x[n]$ into $\frac{N}{K}$ chunks of length K
II: convolve each chunk with $h[n]$
III: add up the results

EXPLANATION

Overlap Save

I: chop $x[n]$ into $\frac{N}{K}$ overlapping chunks of length $K+M-1$
II: \circledast_{K+M-1} each chunk with $h[n]$
III: discard first $M-1$ from each chunk
IV: concatenate to make $y[n]$

GO TO WWW.MENTI.COM AND USE THE CODE 936557

Consider the finite length signals

$$
\begin{aligned}
& x[0], \cdots, x[N-1] \\
& h[0], \cdots, h[M-1]
\end{aligned}
$$

If we convolve $x[n]$ with $h[n]$ then $x[n] * h[n]=\sum_{k=0}^{M-1} h[k] x[k-n]$.

What is the total arithmetic complexity (\times or + operations)?

$$
\begin{aligned}
& \mathrm{A}: \approx M N \\
& \mathrm{~B}: \approx 2 M N \\
& \mathrm{C}: \approx 4 M N
\end{aligned}
$$

ANSWER

Consider the finite length signals

$$
\begin{aligned}
& x[0], \cdots, x[N-1] \\
& h[0], \cdots, h[M-1]
\end{aligned}
$$

If we convolve $x[n]$ with $h[n]$ then $x[n] * h[n]=\sum_{k=0}^{M-1} h[k] x[k-n]$.

What is the total arithmetic complexity (\times or + operations)?

$$
\begin{aligned}
& \mathrm{A}: \approx M N \\
& \mathrm{~B}: \approx 2 M N \\
& \mathrm{C}: \approx 4 M N
\end{aligned}
$$

We know that we can perform convolution in the frequency-domain using a single DFT.

What is not a disadvantage of this approach?
A: More computation is required
B: No outputs until all $x[n]$ has been input
C: DFT may be very long if N is large

ANSWER

We know that we can perform convolution in the frequency-domain using a single DFT.

What is not a disadvantage of this approach?
A: More computation is required
B: No outputs until all $x[n]$ has been input
C: DFT may be very long if N is large

EXPLANATION

Example: $M=10^{3}, N=10^{4}$:
Direct: $2 M N=2 \times 10^{7} \quad$ with DFT: $=1.8 \times 10^{6}$

