Imperial College London

MODULE 3 CLASS

Aidan Hogg - 31 October 2019 ELEC96010 (EE3-07): Digital Signal Processing Department of Electrical and Electronic Engineering

Method:

- 1: Conceptual question posed students think quietly on their own and report initial answers on Mentimeter (3 mins)
- 2: Students discuss their answers in small groups (2 mins)
- 3: Explanation/discussion of correct answer (3 mins)

The normal arithmetic rules for multiplication are:

Identity: $x[n] * \delta[n] = x[n]$ Commutative: x[n] * v[n] = v[n] * x[n]Associative: x[n] * (v[n] * w[n]) = (x[n] * v[n]) * w[n]Distributive: $x[n] * (\alpha v[n] + \beta w[n]) = (x[n] * \alpha v[n]) + (x[n] * \beta w[n])$

What normal arithmetic rules does Convolution obey?

- A: Identity and commutative
- B: Identity, commutative and associative
- C: All of them

The normal arithmetic rules for multiplication are:

Identity: $x[n] * \delta[n] = x[n]$ Commutative: x[n] * v[n] = v[n] * x[n]Associative: x[n] * (v[n] * w[n]) = (x[n] * v[n]) * w[n]Distributive: $x[n] * (\alpha v[n] + \beta w[n]) = (x[n] * \alpha v[n]) + (x[n] * \beta w[n])$

What normal arithmetic rules does Convolution obey?

- A: Identity and commutative
- B: Identity, commutative and associative

C: All of them

$$\begin{aligned} x[0], \cdots, x[N-1] \\ y[0], \cdots, y[M-1] \qquad \text{where } M < N \end{aligned}$$

When

$$v[n] = x[n] * y[n]$$
$$w[n] = x[n] \circledast_N y[n]$$

State the values of n for which v[n] = w[n]?

A:
$$0 \le n \le N-1$$

B: $M-1 \le n \le N-1$
C: $N-M \le n \le N-1$

$$\label{eq:starses} \begin{split} x[0], \cdots, x[N-1] \\ y[0], \cdots, y[M-1] \qquad \text{where } M < N \end{split}$$

When

$$v[n] = x[n] * y[n]$$
$$w[n] = x[n] \circledast_N y[n]$$

State the values of n for which v[n] = w[n]?

A:
$$0 \le n \le N - 1$$

B: $M - 1 \le n \le N - 1$
C: $N - M \le n \le N - 1$

Convolution sum: $\sum_{k=0}^{M-1} h[k]x[k-n]$ thus y[n] has only M + N - 1 non-zero values.

Circular Convolution: $y \circledast_N [n] = \sum_{k=0}^{M-1} x[k]h[(n-k)_{\text{mod }N}]$ $y \circledast_N [n]$ has period $N \Rightarrow y \circledast_N [n]$ has N distinct values

Only the first M-1 values are affected by the circular repetition: $y \circledast_N [n] = y[n]$ for $M-1 \le n \le N-1$

If we append M-1 zeros (or more) onto x[n], then the circular repetition has no effect at all

You can also calculate the convolution is using a matrix, where the circular convolution y[n] = x[n] * h[n] is the equivalent to:

A:

B:

C:

$\begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix}$	$x[3] \\ x[0] \\ x[1] \\ x[2]$	x[2] x[3] x[0] x[1]	$ \begin{array}{c} x[1] \\ x[2] \\ x[3] \\ x[0] \\ \end{array} $	$\begin{bmatrix} h[0]\\h[1]\\h[2]\\h[3]\end{bmatrix} =$	$\begin{bmatrix} y[0] \\ y[1] \\ y[2] \\ y[3] \end{bmatrix}$
$\begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix}$	$x[1] \\ x[2] \\ x[3] \\ x[0]$	x[2] x[3] x[0] x[1]	$ \begin{array}{c} x[3] \\ x[0] \\ x[1] \\ x[2] \end{array} $	$\begin{bmatrix} h[0]\\h[1]\\h[2]\\h[3]\end{bmatrix} =$	$\begin{bmatrix} y[0]\\y[1]\\y[2]\\y[3]\end{bmatrix}$
$\begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix}$	x[1] x[0] x[3] x[2]	x[2] x[3] x[0] x[1]	$ \begin{array}{c} x[3] \\ x[2] \\ x[1] \\ x[0] \end{array} $	$\begin{bmatrix} h[0]\\h[1]\\h[2]\\h[3]\end{bmatrix} =$	$\begin{bmatrix} y[0]\\y[1]\\y[2]\\y[3]\end{bmatrix}$

ANSWER

You can also calculate the convolution is using a matrix, where the circular convolution y[n] = x[n] * h[n] is the equivalent to:

A:

B:

C:

$ \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix} $	$x[3] \\ x[0] \\ x[1] \\ x[2]$	x[2] x[3] x[0] x[1]	$ \begin{array}{c} x[1] \\ x[2] \\ x[3] \\ x[0] \end{array} $	$\begin{bmatrix} h[0]\\h[1]\\h[2]\\h[3]\end{bmatrix} =$	$\begin{bmatrix} y[0] \\ y[1] \\ y[2] \\ y[3] \end{bmatrix}$
$\begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix}$	$x[1] \\ x[2] \\ x[3] \\ x[0]$	x[2] x[3] x[0] x[1]	$ \begin{array}{c} x[3] \\ x[0] \\ x[1] \\ x[2] \end{array} $	$\begin{bmatrix} h[0]\\h[1]\\h[2]\\h[3]\end{bmatrix} =$	$\begin{bmatrix} y[0] \\ y[1] \\ y[2] \\ y[3] \end{bmatrix}$
$\begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix}$	x[1] x[0] x[3] x[2]	x[2] x[3] x[0] x[1]	$\begin{array}{c} x[3] \\ x[2] \\ x[1] \\ x[0] \end{array}$	$\begin{bmatrix} h[0]\\h[1]\\h[2]\\h[3]\end{bmatrix} =$	$\begin{bmatrix} y[0] \\ y[1] \\ y[2] \\ y[3] \end{bmatrix}$

Circulant Matrix Method

One way to calculate the convolution is using a circulant matrix, where the circular convolution $y[n] = x[n] \circledast h[n]$ is the equivalent to:

$$\begin{bmatrix} x[0] & x[3] & x[2] & x[1] \\ x[1] & x[0] & x[3] & x[2] \\ x[2] & x[1] & x[0] & x[3] \\ x[3] & x[2] & x[1] & x[0] \end{bmatrix} \begin{bmatrix} h[0] \\ h[1] \\ h[2] \\ h[3] \end{bmatrix} = \begin{bmatrix} y[0] \\ y[1] \\ y[2] \\ y[3] \end{bmatrix}$$

Where h[n] and x[n] are made up of 4 samples.

Simple Trick Method

There is a also a very simple trick that can be used to calculate the convolution:

		-2	-1	0	1	2
			x[-1]	x[0]	x[1]	x[2]
		h[-2]	h[-1]	h[0]	h[1]	
			h[1]x[-1]	h[1]x[0]	h[1]x[1]	h[1]x[2]
		h[0]x[-1]	h[0]x[0]	h[0]x[1]	h[0]x[2]	×
	h[-1]x[-1]	h[-1]x[0]	h[-1]x[1]	h[-1]x[2]	×	
h[-2]x[-1]	h[-2]x[0]	h[-2]x[1]	h[-2]x[2]	×		
y[-3]	y[-2]	y[-1]	y[0]	y[1]	y[2]	y[3]

Overlap save for x[0: N-1] with h[0: M-1] is defined as:

- I: chop x[n] into $\frac{N}{K}$ overlapping chunks of length K + M 1
- II: \circledast_{K+M-1} each chunk with h[n]
- III: discard first M-1 from each chunk
- IV: concatenate to make y[n]

What will be the output length of y[n]

A: N + M - 1B: N - 1C: N Overlap save for x[0:N-1] with h[0:M-1] is defined as:

- I: chop x[n] into $\frac{N}{K}$ overlapping chunks of length K + M 1
- II: \circledast_{K+M-1} each chunk with h[n]
- III: discard first M-1 from each chunk
- IV: concatenate to make y[n]

What will be the output length of y[n]

A: N + M - 1B: N - 1C: N

- I: chop x[n] into $\frac{N}{K}$ chunks of length K
- II: convolve each chunk with h[n]
- III: add up the results

EXPLANATION

Overlap Save

I: chop x[n] into $\frac{N}{K}$ overlapping chunks of length K + M - 1

- II: \circledast_{K+M-1} each chunk with h[n]
- III: discard first M-1 from each chunk
- IV: concatenate to make y[n]

$$\begin{split} &x[0],\cdots,x[N-1]\\ &h[0],\cdots,h[M-1] \end{split}$$

If we convolve x[n] with h[n] then $x[n] * h[n] = \sum_{k=0}^{M-1} h[k]x[k-n]$.

What is the total arithmetic complexity (\times or + operations)?

A: $\approx MN$ B: $\approx 2MN$ C: $\approx 4MN$

$$\begin{split} &x[0],\cdots,x[N-1]\\ &h[0],\cdots,h[M-1] \end{split}$$

If we convolve x[n] with h[n] then $x[n] * h[n] = \sum_{k=0}^{M-1} h[k]x[k-n]$.

What is the total arithmetic complexity (\times or + operations)?

A: $\approx MN$ B: $\approx 2MN$ C: $\approx 4MN$ We know that we can perform convolution in the frequency-domain using a single DFT.

What is not a disadvantage of this approach?

- A: More computation is required
- B: No outputs until all x[n] has been input
- C: DFT may be very long if N is large

We know that we can perform convolution in the frequency-domain using a single DFT.

What is not a disadvantage of this approach?

- A: More computation is required
- B: No outputs until all x[n] has been input
- C: DFT may be very long if N is large

Example: $M = 10^3, N = 10^4$:

Direct: $2MN = 2 \times 10^7$ with DFT: = 1.8×10^6