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Recap of sequences

a collection of objects where order matters and
repetitions are significant

Alternatively, we may think of a sequence as a
function with integer domain.

A finite sequence contains only a finite number of
terms.

An infinite sequence is unending.
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Series

A series may be considered in terms of the partial
sums of the corresponding sequence.

If u0, u1, u2, . . . is a sequence, then the partial sums
are

S0 = u0

S1 = u0 + u1

S2 = u0 + u1 + u2

. . .

Sn = u0 + u1 + u2 + . . .+ un =
n∑

r=0

ur

Then what is formed is called a series – a sum of
terms of a sequence.
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Series

The sequence u0, u1, u2, . . . is summable if the
sequence of partial sums S0, S1, S2, . . . converges, and

∞∑
r=0

ur = lim
n→∞

(
n∑

r=0

ur

)
= lim

n→∞
Sn

As there are many types of sequence, so there are
many types of series.
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Arithmetic Series

An arithmetic sequence is defined as

un = a+ nd

(starting at n = 0).
a is the first term and d is the common difference.
The arithmetic series Sn (sum of u0 to un) is

Sn =
n+ 1

2
(2a+ nd)

As an example, consider the sum

S99 = 1 + 2 + 3 + . . .+ 100 (100 terms)

where a = 1 and d = 1.
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S = 1 + 2 + 3 + . . . + 100

The sum is S = 1 + 2 + 3 + . . .+ 100 that we can rearrange as
S = 100 + 99 + 98 + . . .+ 1
that is from the largest value to the smallest value
Now we add together these two sums

S = 1 +2 +3 . . . +100
+
S = 100 +99 +98 . . . +1
2S = 101 +101 +101 . . . +101

which gives
2S = 100× 101 that is

S99 =
10100

2
= 5050

Sn = (n+1)×(n+2)
2 , therefore, S99 = 100×101

2
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Arithmetic Series

Using the trick when summing S = 1 + 2 + . . .+ 100
but now for the general arithmetic series

Given
un = a+ nd.

Show that:
Sn =

n+ 1

2
(2a+ nd).
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Arithmetic Series

Arrange forwards and backwards:

Sn = a +(a+ d) . . . +(a+ nd)
+
Sn = (a+ nd) +(a+ (n− 1)d) . . . +a

2Sn = (2a+ nd) +(2a+ nd) . . . +(2a+ nd)

There are n+ 1 equal terms:

2Sn = (n+ 1)(2a+ nd)

Sn =
n+ 1

2
(2a+ nd)
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Some results

The arithmetic mean of P and Q is the number A
such that

P + A+Q

are terms of an arithmetic series.
So we have that A− P = d and Q− A = d hence
A− P = Q− A that gives 2A = P +Q then

A =
P +Q

2

the arithmetic mean of two numbers is their average
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Some results

The three arithmetic means between two numbers P
and Q are the numbers A, B, and C then

P + A+B + C +Q

is an arithmetic series. Then

d =
Q− P

4

then A = P + (Q− P )/4, B = P + (Q− P )/2 and
C = P + 3(Q− P )/4
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Geometric series

A geometric sequence is

un = arn.

(starting at n = 0).

where a is the first term and r is the common ratio.

The geometric series is defined as

Sn =
n∑

r=0

arr =
a(1− rn+1)

1− r
.
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Geometric Series

To get the general form of the geometric series, we
are going to use a similar trick as in the arithmetic
series.

Subtract rSn from Sn:

Sn = a +ar +ar2 . . . +arn

-
rSn = +ar +ar2 . . . +arn +arn+1

Sn − rSn = a +0 +0 . . . +0 −arn+1

Then Sn − rSn = a− arn+1 or Sn(1− r) = a(1− rn+1)

Sn =
a(1− rn+1)

1− r
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Some results

The geometric mean of P and Q is the number A
such that

P + A+Q

are terms of an geometric series.
So we have that A/P = r and Q/A = r hence
A/P = Q/A that gives A2 = PQ then

A =
√

PQ

the geometric mean of two numbers is the square
root of their product
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Some results

The three geometric means between two numbers P
and Q are the numbers A, B, and C then

P + A+B + C +Q

is a geometric series. Then Q/P = r4 or r = (Q/P )1/4

then A = P (Q/P )1/4, B = P (Q/P )2/4 and
C = P (Q/P )3/4
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Series of powers of the natural numbers

Consider

0 + 1 + 2 + 3 + . . .+ n =
n∑

r=0

r.

This is arithmetic (a = 0, d = 1):
n∑

r=0

r =
n+ 1

2
(2a+ nd) =

(n+ 1)n

2
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Sum of squares

Compute:

02 + 12 + 22 + . . .+ n2 =
n∑

r=0

r2

Result:
n∑

r=0

r2 =
n(n+ 1)(2n+ 1)

6
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Derivation of
∑n

i r
2

First notice (r + 1)3 = r3 + 3r2 + 3r + 1 so r2 can be
written as

r2 =
(r + 1)3 − r3 − 3r − 1

3

write the sum using this
n∑

r=0

r2 =
1

3

n∑
r=0

(
(r + 1)3 − r3 − 3r − 1

)
=

1

3

(
n∑

r=0

(r + 1)3 −
n∑

r=0

r3 −
n∑

r=0

3r −
n∑

r=0

1

)
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Derivation of
∑n

i r
2

Doing the sums∑n
r=0 1 = n+ 1 as

∑n
r=1 1 is summing 1, n+ 1 times∑n

r=0 r = ((n+ 1)n/2) from previous result

now these two sums together
∑n

r=1(r + 1)3 −
∑n

r=1 r
3

∑n
r=0(r + 1)3 = 1 +23 . . . +n3 +(n+ 1)3

−∑n
r=0 r

3 = 0 +1 +23 . . . +n3

= 0 +0 +0 . . . +0 +(n+ 1)3

then
n∑

r=0

(r + 1)3 −
n∑

r=0

r3 = (n+ 1)3
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Derivation of
∑n

i r
2

Putting the results together
n∑

r=0

r2 =
1

3

(
n∑

r=0

(r + 1)3 −
n∑

r=0

r3 −
n∑

r=0

3r −
n∑

r=0

1

)

=
1

3

(
(n+ 1)3 − 3

n(n+ 1)

2
− (n+ 1)

)
=

1

3

(
n3 + 3n2 + 3n+ 1− 3n(n+ 1)

2
− n− 1

)
=

1

3

(
n3 +

3

2
n2 +

1

2
n

)
=

n

6
(2n2 + 3n+ 1)

=
n(n+ 1)(2n+ 1)

6
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Sum of cubes

In this case
n∑

r=0

r3 =

(
n(n+ 1)

2

)2

can you solve it? Hint use that

(r + 1)4 = r4 + 4r3 + 6r2 + 4r + 1
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Infinite series

An infinite series is one whose terms continue
indefinitely.

For example, the sequence

1,
1

2
,
1

4
,
1

8
, . . .

is a geometric sequence where a = 1 and r = 1
2
,

giving rise to the partial sum

Sn = 1 +
1

2
+

1

4
+ · · ·+ 1

2n
.

Then

Sn =
a(1− rn+1)

1− r
=

1−
(
1
2

)n+1

1− 1
2

= 2

(
1− 1

2n+1

)
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Infinite series

As n increases without bound, 1/2n decreases and
approaches 0.
The partial sums are

Sn = 2

(
1− 1

2n+1

)
.

As n → ∞, 1
2n+1 → 0, so as n → ∞

Sn → 2.

We say that the limit of Sn as n approaches infinity is

lim
n→∞

Sn = S∞ = 2.

Electronic Engineering Mathematics 1 – ECS408 Queen Mary University of London 22



Infinite series

Note that when it is stated that the limit of Sn as n
approaches infinity is 2,

lim
n→∞

Sn = S∞ = 2

what is meant is that a value of Sn can be found as
close to the number 2 as we wish by selecting a
sufficiently large enough value of n.

However, Sn never actually attains the value of 2 in
this case.
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Example

For the geometric series

Sn =
a(1− rn+1)

1− r
,

when |r| < 1, we have rn+1 → 0 as n → ∞.

Therefore

lim
n→∞

Sn =
a(1− 0)

1− r
=

a

1− r
.

Hence, for the example above where a = 1 and r = 1
2
,

1,
1

2
,
1

4
,
1

8
, . . .

lim
n→∞

Sn =
a

1− r
=

1

1− 1
2

= 2.
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No limit

Sometimes a series has no limit. For example, the
sequence

1, 3, 5, . . .

is an arithmetic sequence where un = 2n+ 1 for
n ≥ 0, with a = 1 and d = 2. The partial sums are

Sn =
n∑

r=0

(2r + 1) = 1 + 3 + 5 + · · ·+ (2n+ 1)

=
n+ 1

2
(2 + 2n) = (n+ 1)2

As n → ∞ so (n+ 1)2 → ∞ and Sn = (n+ 1)2 → ∞.
That is

lim
n→∞

Sn = S∞ = ∞.
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Indeterminate form

The fact that as n → ∞ so 1/n → 0 can be usefully
employed to find the limits of certain indeterminate
forms.
For example

lim
n→∞

5n+ 3

2n− 7
= lim

n→∞

5 + 3
n

2− 7
n

=
5 + 0

2− 0
=

5

2
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Convergent and divergent series

An infinite series whose partial sums tend to a finite
limit is said to be a convergent series.
If an infinite series does not converge then it is said
to diverge.
If a formula for Sn cannot be found it may not be
possible by simple inspection to decide whether or
not a given series converges.
To help with this, we introduce some convergence
tests.
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Test of convergence

Test 1: A series cannot converge unless its terms ultimately
tend to zero

Test 2: The comparison test
Test 3: D’Alembert’s ratio test for positive terms
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Test 1

If
Sn = u0 + u1 + u2 + . . .+ un,

then the series can only converge if

lim
n→∞

un = 0.

Notice that this does not mean that if limn→∞ un = 0
then Sn converges.
Example: the harmonic series

1 +
1

2
+

1

3
+

1

4
+ . . .

diverges, even though lim
n→∞

1

n
= 0.
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Example continuation

To show this, we can group the terms as follows
∞∑
r=0

1

r + 1
= 1+

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ . . .

Now we look for a bound,
(
1
3
+ 1

4

)
>
(
1
4
+ 1

4

)
= 1

2

and
(
1
5
+ 1

6
+ 1

7
+ 1

8

)
>
(
1
8
+ 1

8
+ 1

8
+ 1

8

)
= 1

2

then
∞∑
r=0

1

r + 1
> 1 +

1

2
+

1

2
+

1

2
+

1

2
+

1

2
. . . = ∞

then
∞∑
r=0

1

r + 1
= ∞
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Test 2: The comparison test

Let
∑

an and
∑

bn be series with positive terms.

Convergence: If 0 ≤ an ≤ bn for all n and
∑

bn

converges, then
∑

an also converges.

Divergence: If 0 ≤ bn ≤ an for all n and
∑

bn

diverges, then
∑

an also diverges.

A standard comparison family is the p-series:
1

1p
+

1

2p
+

1

3p
+

1

4p
+ . . .

1

np
+ . . . =

∞∑
r=0

1

(r + 1)p
,

which converges if p > 1 and diverges if p ≤ 1.
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Test 2: Example

Consider the series
∑∞

n=1

1

n3 + n

For all n ≥ 1, n3 + n ≥ n3 ⇒ 1

n3 + n
≤ 1

n3

The comparison series is
∞∑
n=1

1

n3
,

a p-series with p = 3 > 1, which is convergent.

Therefore, by the comparison test,
∞∑
n=1

1

n3 + n
converges
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Test 3: D’Alembert’s ratio test for positive series

If
u0 + u1 + u2 + . . .+ un + . . . =

∞∑
r=0

ur

is a series of positive terms, then

if lim
n→∞

un+1

un
< 1, the series converges,

if lim
n→∞

un+1

un
> 1, the series diverges,

if lim
n→∞

un+1

un
= 1, the test is inconclusive.
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Question

Determine whether the following series is convergent
or divergent:

1 +
3

2
+

5

4
+

7

8
+ . . .

We can write the nth term as

un =
2n+ 1

2n
, n = 0, 1, 2, . . .

Then the next term is

un+1 =
2(n+ 1) + 1

2n+1
=

2n+ 3

2n+1
.

The ratio is
un+1

un

=

(
2n+ 3

2n+1

)(
2n

2n+ 1

)
=

1

2

(
2n+ 3

2n+ 1

)
.
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Question. Continue

The limit of the ratio is

lim
n→∞

un+1

un

= lim
n→∞

(
1

2
· 2n+ 3

2n+ 1

)
=

1

2
lim
n→∞

2 + 3
n

2 + 1
n

=
1

2
· 2
2
=

1

2
.

Since this limit is < 1, the series converges by the
ratio test.
Note that the limit 1

2
here is the limit of the ratio, not

the sum of the series. (In fact, the sum of the series
is 6.)
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Absolute convergence

If a series
∞∑
r=0

ur converges, then

the series of absolute values of the terms
∞∑
r=0

|ur|

may or may not converge.
If a series converges and the series of absolute
values of the terms also converges, then the series is
said to be absolutely convergent.

In fact, if
∞∑
r=0

|ur| converges, then
∞∑
r=0

ur also

converges.
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Convergent test again

If
u0 + u1 + u2 + . . .+ un + . . . =

∞∑
r=0

ur

is a series where the terms can be positive or
negative, then

if lim
n→∞

|un+1|
|un|

< 1, the series converges,

if lim
n→∞

|un+1|
|un|

> 1, the series diverges,

if lim
n→∞

|un+1|
|un|

= 1, the test is inconclusive.
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Conditionally convergent

If a series
∞∑
r=0

ur converges, but

the series
∞∑
r=0

|ur| diverges, then

∞∑
r=0

ur

is said to be conditionally convergent.
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Example: alternating harmonic series

Consider the alternating harmonic series
∞∑
r=0

ur with ur =
(−1)r

r + 1
.

Written out:

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . .

The terms satisfy Test 1: limr→∞ ur = 0, so the series
may converge.

Using more advanced techniques beyond this course,
it can be in fact shown that

∞∑
r=0

(−1)r

r + 1
= ln 2.
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Conditional convergence

Now consider the series of absolute values:
∞∑
r=0

|ur| =
∞∑
r=0

1

r + 1
= 1 +

1

2
+

1

3
+

1

4
+ . . .

The harmonic series, which we have shown diverges.
Therefore:

∞∑
r=0

|ur| = ∞ (diverges),

but
∞∑
r=0

ur = ln 2 (converges).

So the alternating harmonic series is conditionally
convergent.
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