Exam Corrections: Digital Signal Processing ELEC96010 (EE3-07)

Aidan O. T. Hogg \{aidan.hogg13@imperial.ac.uk\}
Imperial College London, (last updated: March 17, 2020)

This document contains all the known corrections to the EE3-07 past papers, dating back to 2010. Please post a question on piazza if there is a mistake in a past paper that has not been listed or if there are errors found within this document.

Exam Paper: Friday, 30 April 2010

Question 5 (d)
The z 's are a mistake.

$$
g(n)=h(n)+g(n-1)
$$

is recursive so...
$g(2 N+2)=h(2 N+2)+g(2 N+1)=h(2 N+2)+h(2 N+1)+g(2 N)=h(2 N+2)+h(2 N+1)+h(2 N)+g(2 N-1)=\ldots$
and so on

$$
\begin{gathered}
g(2 N+2)=\sum_{-\infty}^{2 N+2} h[n] \\
g(2 N+2)=\sum_{0}^{2 N+2} h[n] \quad, \text { Due to } h[n]=0, n<0 \\
g(2 N+2)=\sum_{0}^{N} h[n] \quad, \text { Due to } h[n]=0, n>N \\
g(2 N+2)=a_{0}+a_{1}+a_{2}+\ldots+a_{N}
\end{gathered}
$$

Exam Paper: Monday, 9 May 2011

Question 3 (b)
It should be: $W_{3}^{2 k}$, this would be my answer:
Upsampled spectrum:

$$
P(z)=X\left(z^{2}\right)
$$

Spectrum after filter:

$$
Q(z)=H(z) P(z)
$$

Downsampled spectrum:

$$
\begin{gathered}
Y(z)=\frac{1}{3} \sum_{k=0}^{2} Q\left(z^{\frac{1}{3}} \times e^{\frac{-j 2 \pi k}{3}}\right)=\frac{1}{3} \sum_{k=0}^{2} H\left(z^{\frac{1}{3}} \times e^{\frac{-j 2 \pi k}{3}}\right) P\left(z^{\frac{1}{3}} \times e^{\frac{-j 2 \pi k}{3}}\right) \\
Y(z)=\frac{1}{3} \sum_{k=0}^{2} H\left(z^{\frac{1}{3}} \times e^{\frac{-j 2 \pi k}{3}}\right) X\left(z^{\frac{2}{3}} \times e^{\frac{-j 4 \pi k}{3}}\right) \\
Y(z)=\frac{1}{3} \sum_{k=0}^{2} H\left(z^{\frac{1}{3}} W_{3}^{k}\right) X\left(z^{\frac{2}{3}} W_{3}^{2 k}\right)
\end{gathered}
$$

Question 4 (d)

Corrected answer:

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =\sum_{n=0}^{M-1} h[n] e^{-j n \omega}+\sum_{n=M}^{2 M-1} h[n] e^{-j n \omega} \\
& =\sum_{n=0}^{M-1} h[n] e^{-j n \omega}+\sum_{n=0}^{M-1} h[N-1-n] e^{-j(N-1-n) \omega} \\
& =e^{-j(M-0.5) \omega}\left(\sum_{n=0}^{M-1} h[n] e^{j(M-0.5-n) \omega}+\sum_{n=0}^{M-1} h[N-1-n] e^{-j(M-0.5-n) \omega}\right) \\
& =e^{-j(M-0.5) \omega}\left(\sum_{n=0}^{M-1} h[n]\left(e^{j(M-0.5-n) \omega}+e^{-j(M-0.5-n) \omega}\right)\right) \\
& =e^{-j(M-0.5) \omega}\left(\sum_{n=0}^{M-1} 2 h[n] \cos ((M-0.5-n) \omega)\right) \\
& =e^{j((0.5-M) \omega)}\left(\sum_{n=0}^{M-1} 2 h[n] \cos ((M-0.5-n) \omega)\right)
\end{aligned}
$$

Exam Paper: Monday, 21 May 2012

Question 4 (a)

The question is wrong, the correct question is:
A discrete-time system is described by:

$$
y(n)=x(n)+x(n-1)-0.5 y(n-2)
$$

Therefore the corrected answer is:

n	xa	xb	ya	yb	ya-yb
-2	-1	0	0	0	0
-1	-0.5	0	0	0	0
0	0.5	0.5	0	0.5	-0.5
1	1	1	1.5	1.5	0
2	0.5	0.5	1.5	1.25	0.25
3	-0.5	-0.5	-0.75	-0.75	0
4	-1	-1	-2.25	-2.125	-0.125
5	-0.5	-0.5	-1.125	-1.125	0

However, the figure is correct!
Question 4 (b) part iv
Corrected answer:

$$
X(z)=1+2 z^{-2}\left(1+z^{-1}+z^{-2}+z^{-3}+z^{-5}\right)-z^{-6}
$$

Therefore:

$$
x[n]=[1,0,2,2,2,2,1,2]
$$

is correct.

Exam Paper: Wednesday, 9 January 2013

Question 1 (b)
The problem with the question is that it does not state what $H(z)$ is...
If we assume it is a lowpass filter to stop aliasing then the answer is slightly wrong...
Corrected answer:

Question 4 (a) part i
Just to clarify the answer:

$$
h\left[(n-m)_{\bmod N}\right] \equiv h(n-m)_{N}
$$

Question 4 (a) part ii
Corrected answer, the circular convolution will result in:

$$
[-5,-16,7,18]
$$

Question 4 (b) part i

Just to clarify the answer:
$x[n]=\sum_{n=-\infty}^{\infty} x[n] \delta(t-n T)=\sum_{n=-\infty}^{\infty} x_{a}(n T) \delta(t-n T)=\sum_{n=-\infty}^{\infty} x_{a}(t) \delta(t-n T)=x_{a}(t) \times \sum_{n=-\infty}^{\infty} \delta(t-n T)$

Exam Paper: Wednesday, 15 January 2014

Question 1 (b) part ii \& iii
The question should use linear convolution which becomes multiplication in the frequency domain.
(ii) $x[n] * x[n-2]$
(iii) $x[n] * x[-n]$

Question 4 (c)
W should have subscript $2 N$ in the first line...

$$
Y[k]=\sum_{n=0}^{2 N-1} y[n] e^{-j \frac{2 \pi}{2 N} n k}
$$

Therefore by substitution:

$$
Y[k]=\sum_{n=0}^{2 N-1} x\left[\frac{n}{2}\right] e^{-j \frac{2 \pi}{2 N} n k}+\sum_{n=0(\mathrm{n} \text { odd })}^{2 N-1} 0 \times e^{-j \frac{2 \pi}{2 N} n k}
$$

Which is just:

$$
Y[k]=\sum_{n=0}^{2 N-1} x\left[\frac{n}{2}\right] e^{-j \frac{2 \pi}{2 N} n k}
$$

Then if we substitute:

$$
m=\frac{n}{2}
$$

we get:

$$
\begin{gathered}
Y[k]=\sum_{m=0}^{N-1} x[m] e^{-j \frac{2 \pi}{2 N}(2 m) k} \\
Y[k]=\sum_{m=0}^{N-1} x[m] e^{-j \frac{2 \pi}{N} m k}=X[k]
\end{gathered}
$$

However due to the periodicity of the DFT mentioned earlier: (i) $X[k+m N]=X[k]$, where m is an integer (i.e. it repeats every N samples) so the solution is just: $Y[k+m N]=X[k]$, where $k=0 . . N-1$ and $m=0 . .1$ (Note: $Y[k]$ will repeat every $2 N$ samples)

Exam Paper: Monday, 15 December 2014

Question 2 (d)

Corrected answer: $a[1]=-0.4, a[2]=0.12$

Question 4 (b)

Corrected answer:
Upsampled spectrum:

$$
P\left(e^{j \omega}\right)=X\left(e^{j I \omega}\right)
$$

Spectrum after filter:

$$
Q\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) P\left(e^{j \omega}\right)
$$

Downsampled spectrum:

$$
\begin{gathered}
Y\left(e^{j \omega}\right)=\frac{1}{D} \sum_{k=0}^{D-1} Q\left(e^{\frac{j(\omega-2 \pi k)}{D}}\right)=\frac{1}{D} \sum_{k=0}^{D-1} H\left(e^{\frac{j(\omega-2 \pi k)}{D}}\right) P\left(e^{\frac{j(\omega-2 \pi k)}{D}}\right) \\
Y\left(e^{j \omega}\right)=\frac{1}{D} \sum_{k=0}^{D-1} H\left(e^{\frac{j(\omega-2 \pi k)}{D}}\right) X\left(e^{\frac{j(\omega-2 \pi k) I}{D}}\right)
\end{gathered}
$$

Exam Paper: Monday, 14 December 2015

Question 1 (d)

For a causal system

$$
Q(z)=\frac{5 z+15.4}{z^{2}+5.2 z+1}
$$

Find the inverse z-transform of $Q(z)$ Correct Answer:

$$
Q(z)=\frac{5 z+15.4}{z^{2}+5.2 z+1}=\frac{3}{z+0.2}+\frac{2}{z+5}=\frac{3 z^{-1}}{1+0.2 z^{-1}}+\frac{2 z^{-1}}{1+5 z^{-1}}
$$

Casual system therefore:

$$
q(n)=3(-0.2)^{n-1} u(n-1)+2(-5)^{n-1} u(n-1)
$$

ROC:

$$
|z|>5
$$

so the system is unstable because the ROC does not include the unit circle.
P.s. There are many possible solutions because there are many ways to represent the same thing i.e.

$$
\begin{aligned}
\delta(n) & =u(n)-u(n-1) \\
\frac{Q(z)}{z} & =\frac{15.4}{z}-\frac{2}{5(z+5)}-\frac{15}{z+0.2} \\
Q(z) & =15.4-\frac{2 z}{5(z+5)}-\frac{15 z}{z+0.2} \\
Q(z) & =15.4-\frac{2}{5\left(1+5 z^{-1}\right)}-\frac{15}{1+0.2 z^{-1}} \\
q(n) & =15.4 \delta(n)-\frac{2}{5}(-5)^{n} u(n)-15(-0.2)^{n} u(n)
\end{aligned}
$$

Question 3 (a) part ii
There should be a second term in the expression for the spectrum of the signal after decimation due to aliasing, therefore, the correct answer is:

$$
\begin{gathered}
X\left(e^{j \omega}\right)=\frac{2}{1-a e^{-j \omega}} \\
Y\left(e^{j \omega}\right)=\frac{1}{M} \sum_{k=0}^{M-1} X\left(e^{\frac{j(\omega-2 \pi k)}{M}}\right)=\frac{1}{2}\left\{X\left(e^{\frac{j \omega}{2}}\right)+X\left(e^{\frac{j(\omega-2 \pi)}{2}}\right)\right\} \\
=\frac{1}{2}\left(\frac{2}{1-a e^{-j \omega / 2}}+\frac{2}{1+a e^{-j \omega / 2}}\right)
\end{gathered}
$$

Question 4 (c)

Corrected answer:

$$
\begin{aligned}
& =\sum_{n=0}^{N / 2-1} x(n)(-1)^{n}+\sum_{n=N / 2}^{N-1} x(n)(-1)^{n} \\
& =\sum_{n=0}^{N / 2-1} x(n)(-1)^{n}+\sum_{n=0}^{N / 2-1} x(N-1-n)(-1)^{N-1-n} \text { (reverse order of summation) } \\
& \left.=\sum_{n=0}^{N / 2-1} x(n)(-1)^{n}+\sum_{n=0}^{N / 2-1} x(n)(-1)^{N-1-n} \text { (due to } x(n)=x(N-1-n)\right) \\
& =\sum_{n=0}^{N / 2-1} x(n)(-1)^{n}+\sum_{n=0}^{N / 2-1} x(n)(-1)^{N}(-1)^{-1}(-1)^{-n} \\
& =\sum_{n=0}^{N / 2-1} x(n)(-1)^{n}-\sum_{n=0}^{N / 2-1} x(n)(-1)^{n}\left(\text { due to }(-1)^{N}=1,(-1)^{-1}=-1,(-1)^{-n}=(-1)^{n}\right) \\
& =0
\end{aligned}
$$

Exam Paper: Wednesday, 14 December 2016

Question 1 (b)
The corrected version of the answer booklet states the group delay is 6 samples which is correct.

Question 3 (c) part ii

The answer book states: "the 'pole' at $z=a$ and the 'zero' for $k=0$ cancel out", so there shouldn't be a 'zero' plotted on the positive real axis in the provided sketch due to cancellation.

Exam Paper: Wednesday, 13 December 2017

Question 1 (b)

The solution is wrong and would only be right if the input was just $2 x[n]$. This is because it misses out a boundary condition!

This is the correct answer using the z-transform method:

$$
\begin{aligned}
Y(z) & =0.7 z^{-1} Y(z)-0.1 z^{-2} Y(z)+2 X(z)-z^{-2} X(z) \\
\left(1-0.7 z^{-1}+0.1 z^{-2}\right) Y(z) & =\left(2-z^{-2}\right) X(z) \\
\frac{Y(z)}{X(z)} & =\frac{2-z^{-2}}{1-0.7 z^{-1}+0.1 z^{-2}} \\
H(z) & =\frac{2 z^{2}-1}{z^{2}-0.7 z+0.1} \\
& =2+\frac{1.4 z-1.2}{z^{2}-0.7 z+0.1} \\
& =2+\frac{1.4 z-1.2}{(z-0.2)(z-0.5)} \\
& =2+\frac{\frac{46}{15}}{z-0.2}-\frac{5}{z-0.5} \\
& =2+\frac{46}{15} z^{-1} \frac{1}{1-0.2 z^{-1}}-\frac{5}{3} z^{-1} \frac{1}{1-0.5 z^{-1}}
\end{aligned}
$$

Thus the impulse response $h[n]$ for the system is:

$$
h[n]=2 \delta[n]+\left(\frac{46}{15}(0.2)^{n-1}-\frac{5}{3}(0.5)^{n-1}\right) u[n-1]
$$

This is how you would do it correctly using the characteristic equation:
The overall system can be regarded as the cascade of two casual LTI systems:
S1: $y[n]-0.7 y[n-1]+0.1 y[n-2]=x_{1}[n]$ and S2: $x_{1}[n]=2 x[n]-x[n-2]$
The impulse response of $h_{1}[n]$ of the system can be found by solving the complementary solution of $h_{1}[n]-0.7 h_{1}[n-1]+0.1 h_{1}[n-2]=\delta[n]$.

Let the complementary solution be $h_{1 c}[n]=\lambda^{n}$, we have $\lambda^{n}-0.7 \lambda^{n-1}+0.1 \lambda^{n-2}=0$ hence $\lambda=\{0.5,0.2\}$.
Therefore $h_{1}[n]=h_{1 c}[n]=\alpha_{1}(0.5)^{n}+\alpha_{2}(0.2)^{n}, n \geq 0$.
Solving for α_{1} and α_{2}, we get $\alpha_{1}=\frac{5}{3}$ and $\alpha_{2}=-\frac{2}{3}$.
Hence $h_{1}[n]=\frac{5}{3}(0.5)^{n}-\frac{2}{3}(0.2)^{n}, n \geq 0$.
The impulse response of $h_{2}[n]$ of the system S2 is given by $h_{2}[n]=2 \delta[n]-\delta[n-2]$.
Thus the impulse response $h[n]$ for the overall system is also:

$$
h[n]=h_{1}[n] * h_{2}[n]=2\left(\frac{5}{3}(0.5)^{n}-\frac{2}{3}(0.2)^{n}\right) u[n]-\left(\frac{5}{3}(0.5)^{n-2}-\frac{2}{3}(0.2)^{n-2}\right) u[n-2]
$$

Interestingly you could also solve this equation in the following way:
First workout the complementary solution:
$y_{c s}[n]=\alpha_{1}(0.5)^{n}+\alpha_{2}(0.2)^{n}, n \geq 0$. (same as above)
Then guess a particular solution that is of a similar form to the input: $y_{p s}=\alpha_{3} \delta[n]$
Thus the total solution is just $y[n]=y_{c s}[n]+y_{p s}[n]$.

Therefore $y[n]=\alpha_{1}(0.5)^{n}+\alpha_{2}(0.2)^{n}+\alpha_{3} \delta[n]$
Now you need to find the three unknowns so set $n=\{0,1,2\}$:
$n=0: y[0]=\alpha_{1}+\alpha_{2}+\alpha_{3}=2$
$n=1: y[1]=0.5 \alpha_{1}+0.2 \alpha_{2}+\alpha_{3}=1.4$
$n=2: y[2]=0.25 \alpha_{1}+0.04 \alpha_{2}+\alpha_{3}=-0.22$
Solving this set of simultaneous equations gives you:
$\alpha_{1}=-\frac{10}{3}, \alpha_{2}=\frac{46}{3}, \alpha_{3}=-10$
Therefore the impulse response is also:

$$
h[n]=-\frac{10}{3}(0.5)^{n}+\frac{46}{3}(0.2)^{n}-10 \delta[n]
$$

As you can see there are multiple answers...
Why not try and workout the step response yourself (Patrick's solution for the unit step response is of course also wrong).

Question 2 (c)
Corrected answer:

It should be mentioned that $H\left(z^{\frac{1}{3}}\right)$ is only realisable if $H(z)$ solely contains z 's to the powers of 3 (aka $\left.H(z)=1+z^{-3}+z^{-6}+z^{-9}+\cdots\right)$ and likewise $H\left(z^{\frac{1}{6}}\right)$ is only realisable if $H(z)$ solely contains z^{\prime} 's to the powers of 6 (aka $\left.H(z)=1+z^{-6}+z^{-12}+z^{-18}+\cdots\right)$.

The question does not tell us what $H(z)$ is so we can assume that it is possible that $H(z)$ only contains powers of 6 .

If $H(z)$ solely contains z 's to the powers of k then we would normally write this as $H\left(z^{k}\right)$ to make it clear what powers of $z H(z)$ contains.

You of course should mention this constraint in the exam!

Exam Paper: Monday, 10 December 2018

Question 1 (b)
The answer for 'A' should be $\frac{1}{32}$ instead of 32 .

