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Introduction to Feedback

In this lecture, we are going to explore how we can modify a system’s
behaviour by applying feedback.

Given the state space equation for a
linear system

σx = Ax + Bu , y = Cx

Imagine we have access to the
state of the system (an auxiliary
measured output).

Examples:
▶ Mechanical systems: positions

and velocities.
▶ Electrical networks: currents

and voltages.

System

x0
(initial state)

x

u y
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Concept of Feedback

Feedback takes measured signals (either state variables, x , or output
variables, y) and modifies the input to the system.

State feedback: directly use x
to modify input.

Output feedback: use output
y to modify input.

Leads to a two-input
configuration (the feedback
signal and an external signal, v)
where the ‘Controller’ is a
design parameter.

System

x0
(initial state)

x

yAdd or
Compare

Controller

v

Notice that the red box is effectively just a new system with different
behaviour where the input is v and the output is y .
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Closed-Loop System

So it is clear to see that a closed-loop system can modify the original
system.

Notice that the Controller itself
can be a dynamical system with
internal state ξ0.

A linear Controller will allow us
to design a controller choosing
appropriate matrices.

Common designs in classical
control (seen in the ‘Control
Systems’ module) are:

▶ Proportional Gain
▶ Proportional Integral (PI)

Controller

System

x0
(initial state)

x

yAdd or
Compare

Controller

v

ξ0 (initial state)
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Flow of Information
If we look at the flow of information, we can see that

System processes inputs to generate outputs.

Controller operates in reverse, using outputs to generate control
signals.

Counter-flow of information forms a feedback loop.

System

x0
(initial state)

x

yAdd or
Compare

Controller

v

ξ0 (initial state)

System Information Flow

Controller Information Flow
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Static Output Feedback

So, essentially, there are four different combinations that we can choose

whether we use state or output feedback

whether the controller is just an amplifier (just a scalar gain) or
whether it is a dynamical system

Let’s start with the simplest case, which is called static output feedback
for system

σx = Ax + Bu , y = Cx

In this case, we modify system input in the following way

u = Ky + v

Notice that here, the input is y , and the output is u (i.e. reversed) with a
new external input v .
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Static Output Feedback: Closed-loop system equations

Therefore, the closed-loop system equations are

σx = Ax + B(Ky + v) , y = Cx

σx = Ax + B(KCx + v) , y = Cx

σx = (A+ BKC )x + Bv , y = Cx

The design parameter in this case is the matrix K

In SISO systems, K is a scalar (e.g. root locus method which is used
to find closed loop poles)

In MIMO systems, K is a matrix (therefore, K can not be moved as
the order of the multiplication matters)
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Static Output Feedback: vs Positive feedback

A common belief is that “Negative feedback is good, positive feedback is
bad”

But if we look at the closed-loop system equations, what does ‘negative
feedback’ actually mean?

σx = (A+ BKC )x + Bv , y = Cx

If we write a minus sign in front of a gain K , does that automatically
make it negative feedback? Well, what if K is negative, then get −(−K ),
which is now positive feedback. In state-space models, introducing a
minus sign just complicates things unnecessarily.

For transfer functions, negative feedback is well-defined due to the minus
sign in the comparator. However, for state-space modelling, negative
feedback is just a matter of convention and not a physical property.
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Root Locus Method for SISO Systems

You will have learned in ‘Control Systems’ that for a single-input
single-output (SISO) system, we can design controllers using the root
locus method.

The objective is to find the gain K that places the closed-loop poles in
desired locations.

The root locus is a powerful tool but is often misunderstood:

By adjusting K , you can change some eigenvalues of the closed-loop
system, but you cannot do very much.

Since there is only one design parameter, K , modifying one pole
forces the others to change.

Therefore, only one eigenvalue can be directly controlled at a time.

Therefore, the root locus method is a very restricted design.
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Adding Design Parameters: Static State Feedback
Instead of output feedback, we can use static state feedback.

Here, we modify system input in the following way

u = Kx + v

Therefore, the closed-loop system equations are

σx = Ax + B(Kx + v) , y = Cx

σx = (A+ BK )x + Bv , y = Cx

where for SISO systems, K is a n × 1 vector, and BK is a n × n matrix.

So, although it is not yet clear whether we can modify all of the
eigenvalues of A (we will see later on that this is possible in some
situations), it is clear that this gives us more flexibility, but at a cost (it
requires full-state measurement).
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Dynamic Output Feedback

We want to find a strategy that combines the simplicity of static output
feedback with the flexibility (and power) of static state feedback.

To achieve this, we use dynamic output feedback, which uses a new
dynamical system to process the output before feeding it back.

σξ = F ξ + Gy

u = Kξ + v

This new system is called the ‘Controller’ of your system, which is
decoupled from your original system.

This setup is related to lead-lag compensation, where poles and zeros are
introduced in the controller to achieve desired system characteristics,
which some of you may have studied in the past.
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Design Parameters: Dynamic Output Feedback

This new dynamical system (controller)

σξ = F ξ + Gy

u = Kξ + v

introduces new four design parameters: F ,G ,K , and the dimension of ξ.

In terms of the transfer function (which you studied in the ‘Control
Systems’ module), the dimension of ξ is related to the number of ‘poles’
that you put into your controller (e.g. a PI controller will have a pole for
x = 0 which means the dim ξ = 1).

Note that dim ξ can go all the way up to n or even larger than n
depending on your design objective.

In this module, we will focus on the case when dim ξ = n, which is
enough for the stabilization of the closed-loop system.
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Closed-Loop System: Dynamic Output Feedback

The closed-loop system, combining plant and dynamic controller

σx = Ax + B(Kξ + v)

σξ = F ξ + G (Cx)

y = Cx

where we have removed the matrix D to make the equations simpler.

In matrix form, we get[
σx
σξ

]
=

[
A BK
GC F

] [
x
ξ

]
+

[
B
0

]
v , y =

[
C 0

] [x
ξ

]
We will study static state feedback this week and dynamic output
feedback next week.

Note in this module, we will not cover dynamic state feedback, but
it does exist and does have use cases.
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Static State Feedback: Observability

We now want to find out what properties of the system are invariant with
respect to feedback and what properties change.

Given the system

σx = Ax + Bu

y = Cx

u = Kx + v

System

x

y

+

+

K

v

Rewriting these equations together, I get

σx = Ax + BKx + Bv , y = Cx

Notice, straight away, that observability remains unchanged under static
state feedback because it does not depend on the input.
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Static State Feedback: Reachability

But is Reachability preserved under static state feedback?

Suppose that the original open loop system is reachable. This means the

rank
[
B AB . . . An−1B

]
= n.

which is equivalent to the rank(
[
sI − A B

]
) = n , ∀s ∈ C

Now we know that the rank of a matrix is not modified by the
multiplication with another matrix of full rank. Therefore,

rank

([
sI − A B

] [ I 0
−K I

])
= n , ∀s ∈ C

which is equivalent to

rank(
[
sI − (A+ BK )︸ ︷︷ ︸

Ã of the
closed-loop system

B
]
) = n , ∀s ∈ C ⇐⇒ The closed-loop

system is reachable
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Static State Feedback: Reachability
So, we have now proved that reachability is not lost by feedback, but can
reachability be gained by feedback?

Suppose that the original open loop system, σx = Ax + Bu, is
unreachable. This means the system can be decomposed into

σx̂ =

[
Â11 Â12

0 Â22

] [
x̂1
x̂2

]
+

[
B̂1

0

]
u , y =

[
C1 C2

] [x̂1
x̂2

]

Now we apply feedback where u =
[
K1 K2

] [x̂1
x̂2

]
+ v and we obtain

σx̂ =

[
Â11 + B̂1K1 Â12 + B̂1K2

0 Â22

] [
x̂1
x̂2

]
+

[
B̂1

0

]
v

Therefore, if the open loop system is unreachable ⇐⇒ the closed-loop
system is unreachable (where the unreachable modes are unchanged
by feedback. Hence why they are often called the ‘fixed’ modes).
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Role of Static State Feedback
So why is static state feedback useful?

Feedback can modify part or completely the A matrix, shaping the
system’s dynamical behaviour.

Recall the eigenvalues of A determine stability and transient
properties.

So modifying eigenvalues (or poles) enables faster response, reduced
oscillations, or stabilization.

So how do we go about modifying the eigenvalues of the system?

Suppose we are given the following reachable system where

σx = Ax + Bu

u = Kx + v

p = 1 (i.e. a single input system)
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Static State Feedback: Controllable Canonical Form
Since the system is reachable, we can write it in controllable canonical form

σx =

 0 1 · · · 0
...

...
. . .

...
−α0 −α1 · · · −αn−1

 x +

0...
1

 u

where

u =
[
K1 · · · Kn

] x1...
xn

+ v

Therefore, applying feedback u = Kx + v modifies the last row in the
following way

σx =

 0 1 · · · 0
...

...
. . .

...
−α0 + K1 −α1 + K2 · · · −αn−1 + Kn

 x +

0...
1

 v
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Static State Feedback: Characteristic Polynomial
So, how can we now modify the characteristic polynomial of the system.

Suppose we make K1 = α0 , K2 = α1 , K3 = α2 , · · · Kn = αn−1

Then, we get a new A matrix, which is

Acl =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0


and have effectively moved all the eigenvalues to zero (the origin):

×5
=⇒
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Static State Feedback: Pole (Eigenvalue) Placement
However, if with K , we can make all eigenvalues zero. Then, we can add
an additional term to K and place the eigenvalue wherever we want.

So now we make K1 = α0 − α̃0 , K2 = α1 − α̃1 , · · · Kn = αn−1 − α̃n−1.

This gives us a new Acl matrix, which is Acl =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
α̃0 α̃1 · · · α̃n−1


Now, we can move all the eigenvalues to wherever we want, for example:

=⇒
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Pole Placement and Ackermann’s Formula

Therefore if we have now proved that in the case where p = 1

Reachability ⇐⇒ The eigenvalues of A+BK
can be arbitrarily assigned

There is actually a formula (which is in the lecture notes) called
‘Ackermann’s formula’, and it provides a systematic way to compute K .

However, for low-order systems, i.e. if n = 2 or n = 3, it is more
convenient to compute directly the characteristic polynomial of A+ BK
and then compute K using the principle of identity of polynomials.

Note that K for each eigenvalue assignment is unique. However, K is not
unique for multi-input systems.
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Stabilizable Systems

A few things to note about stabilizable systems:

Feedback shapes behaviour but does not alter reachability properties.

If the system is not reachable, some eigenvalues remain fixed.

A systems can be made stable (we say the system is stabilizable)
even if not fully reachable where the fixed/unreachable modes are
stable.
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Next Steps

Next week, we will extend these concepts to dynamic and output feedback
systems.

Coursework 2 will be released this Friday (21st March 2025)!
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