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State-to-Output Properties

The idea is similar to input-to-state properties.

We consider a system with input u
and output y .

System
x

u y

The goal is to quantify the information on state, x(t), that can be
obtained from measurements of the output signal, y(t), over a given
interval.
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Two Perspectives: Observability (Future Measurements)

Much like reachability and controllability, we analyse the system from two
perspectives

1 Using present and future output measurements to infer the current
state.

t = 0
future

y(t)
x(0)

y(t) is known for t ≤ 0
=⇒ find x(0)

▶ We use observations of y(t) at the current time and in the future to
help us estimate the initial state.

▶ This approach is common in online applications:
⋆ Real-time control, signal processing and communication applications

▶ This property is called ‘obserability’ and relies on observations of
future data to infer the initial state.
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Two Perspectives: Reconstructability (Past Measurements)

Much like reachability and controllability, we analyse the system from two
perspectives

2 Using past and present output measurements to infer the future state.

t = 0 y(T )
past

x(T )
y(0) y(t) is known for t ∈ [0,T ]

=⇒ find x(T ).

▶ We use y(t) and the current time and in the past to help us
reconstruct the state at x(T )

▶ This is useful in:
⋆ Weather forecasting and state estimation in dynamical systems

▶ This property is called ‘Reconstructability’ and relies on historical
data to infer the current state.
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Observability vs Reconstructability

Similar to reachability and controllability in that observability and
reconstructability are the same if we reverse the arrow of time.

Observability and reconstructability are equivalent in continuous-time
systems but can differ in discrete-time systems.

In discrete-time systems, they differ due to eigenvalues at zero (as
there may be several past for the same future).

In this module, we will focus all our efforts on the observability property,
but it is good to know that the reconstructability property exists.
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Reachability vs Observability

When discussing reachability and controllability, we have always taken a
positive approach.

I would like to go from A to B, and then I would like to find an input
signal such that I can move the state of the system from A to B

However, in the case of the observability property (and reconstructed
property), we have to identify a negative property.

We say that the system satisfies an observability condition if the system
does not possess a negative property.
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Observability in Linear Discrete-Time Systems

System equations are

xx = Ax + Bu , y = Cx

Given y [k], k ≥ 0, and u[k], k ≥ 0 then output for two states xa, xb is

Pick xa[k] =⇒ ya[k] = CAkxa[0]︸ ︷︷ ︸
free response

+
k−1∑
i=0

CAk−1−iBu[i ] + Du[k]︸ ︷︷ ︸
forced response

Pick xb[k] =⇒ yb[k] = CAkxb[0]︸ ︷︷ ︸
free response

+
k−1∑
i=0

CAk−1−iBu[i ] + Du[k]︸ ︷︷ ︸
forced response

Notice that xa and xb only appears in the free response of the state of the
system. Therefore, if I measure u[k] and y [k], then the only important
part I have to study is the free response of the output.
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Indistinguishable States

So we now know that

Observability depends only on the pair (A,C ).

We assume u[k] = 0 to focus on the free response of the system.

Therefore
xa =⇒ ya[k] = CAkxa,

xb =⇒ yb[k] = CAkxb.

Note that xa and xb are non-distinguishable for 0 steps in the future if
ya[0] = yb[0].

Likewise, xa and xb are non-distinguishable for 1 step in the future if
ya[0] = yb[0] and ya[1] = yb[1].

and so on
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Recursive Condition for Indistinguishability

Note that two states are indistinguishable in zero steps if
ya[0] = yb[0] ⇐⇒ Cxa = Cxb =⇒ C (xa − xb) = 0.

In one step if C (xa − xb) = 0 and
ya[1] = yb[1] ⇐⇒ CAxa = CAxb =⇒ CA(xa − xb) = 0.

In general, we can say that two states are indistinguishable in n steps if

C (xa − xb) = 0,

...

CAn−1(xa − xb) = 0.

We can now stop at n − 1 steps because of the Cayley-Hamilton theorem,
which tells us that if CAn−1(xa − xb) = 0 =⇒ CAn(xa − xb) = 0 because
An can be written as a linear combination of all lower powers of A.
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Kernel of the Observability Matrix

xa , xb indist. 0 ⇐⇒ C (xa − xb) = 0 ⇐⇒ xa − xb ∈ kerC

xa , xb indist. 1 ⇐⇒ CA(xa − xb) = 0 ⇐⇒ xa − xb ∈ ker

[
C
CA

]

xa , xb insist. 2 ⇐⇒ CA2(xa − xb) = 0 ⇐⇒ xa − xb ∈ ker

 C
CA
CA2


...

xa , xb insist. n ⇐⇒ CAn−1(xa − xb) = 0 ⇐⇒ xa − xb ∈ ker


C
CA
...

CAn−1


A kernel is just the set of all vectors, and when you multiply the vector
with the matrix, you get zero. It is just a name!
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Observability Matrix

This gives us the observability matrix of the system

O =


C
CA
CA2

...
CAn−1


The observability matrix of the system is used to express the fact that two
states may be distinguishable or non-distinguishable.

If the difference xa − xb belongs to kerO, which means the product of O
with xa − xb is equal to zero, then this pair is not distinguishable.

If the difference xa− xb does not belong to kerO, which means the product
of O with xa − xb is different from zero, then the pair is distinguishable.
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Properties of the Observability Matrix

So for the pair xa , xb to be distinguishable, there needs to be at least one
sample from each of their outputs which is different.

So, we can use this observability matrix of the system to express a
property of the overall system.

O =

n columns︷ ︸︸ ︷
C
CA
CA2

...
CAn−1




q × n rows

Note that if q = 1 (i.e. a
single output system), then
the observability matrix is
square, n × n.

It is interesting to observe how similar some of the tools we are using here
are to the ones we used for reachability and controllability.
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Full Rank Condition for Observability

So we know that xa is indistinguishable (regardless of the number of steps)
from xb if xa − xb ∈ kerO.

This means that

A system is observable if and only if O has full rank n

When q = 1 then det(O) ̸= 0

⇐⇒ all pairs xa , xb are non-indistinguishable (double negative)

We could simplify this further by saying that a state x̄ is indistinguishable
(regardless of the number of steps) from 0 if x̄ ∈ kerO.

All states x̄ can be distinguishable from 0 (regardless of the number
of steps)
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Observability in Practice

The output represents what the designer chooses to measure.

For a mechanical system, we could measure positions, velocities,
accelerations, etc.

However, the more outputs we measure, the higher the cost.

For example, measuring only velocities may lose positional
information, but a clever combination can restore observability.

In a multiple-output system, removing the wrong output may lead to
loss of observability.
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Example 1: A Non-Observable System

Given:

A =

0 0 0
0 0 0
0 0 0

 , C =
[
1 0 1

]
.

The observability matrix:

O =

 C
CA
CA2

 =

1 0 1
0 0 1
0 0 1

 .

Since det(O) = 0, the system is non-observable.
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Example 1: Geometric Interpretation

The kernel consists of vectors v = (v1, v2, v3)
T such that:

Ov =

1 0 1
0 0 1
0 0 1

v1v2
v3

 =

v1 + v3
v3
v3

 = 0.

This implies v3 = 0 and v1 = 0, leaving v2 free:

ker(O) = im

01
0



Sometimes call the ‘span’ i.e. ker(O) = span

01
0


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Example 1: A Non-Observable System

x1

x2

x3

All initial states alone this line
generate the same output

That is to say, the states are indistinguishable along any line parallel to the
x2-axis.
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Observable System

Suppose q = 1 and rankO = n (full rank) ⇐⇒ det(O) ̸= 0

Now, suppose I measure

y [0] = Cx [0]

y [1] = CAx [0]

...

y [n − 1] = CAn−1x [0]

Yn−1 =


y [0]
y [1]
...

y [n − 1]

 = Ox [0]

Therefore the state x [0] is given by

x [0] = O−1Yn−1
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Observability Block Diagram

We can now represent this equation as a block diagram in the following
way

System
x [0]

Yn−1

(stack) O−1u x [0]
y [k]

This can also be done online in a rather clever way

System
x [0] ∆ ∆ ∆u

y [0]

y [1] y [0]

y [n − 1] y [n − 2] y [1] y [0]

y [2n − 1] y [2n − 2] y [n + 1] y [n]
O−1 x [0]

Ak

x [T ]

No feedback here, so this method is very sensitive noise.
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Next Steps: Observability in Continuous-Time Systems

We will now explore observability for continuous-time systems.

The link between observability and reachability remains strong.

The techniques developed for discrete-time systems extend naturally
to the continuous case.
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Continuous-Time Systems

Given a continuous-time system

ẋ = Ax + Bu , y = Cx

Note again that D is not important as it does not reveal anything about
the internal properties of the system.

If we measure u(t) for all t > 0 and y(t) for all t > 0 then we can
effectively measure the free response of the output

CeAtx(0)

Remember we can always assume that input signal is identically equal to
zero for observability analysis.
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Observability in Continuous-Time Systems

We first need to study a negative property. We must verify when two
initial start states cannot be distinguished from output measurements.

Once we have established this property, then we will call a system
‘observable’ if it does not possess this indistinguishable property

Formally:

Two states xa and xb are indistinguishable in some interval
[0,T ] , T > 0 if

ya(t) = CeAtxa = CeAtxb = yb(t), ∀t ∈ [0,T ]

That is to say that their output trajectories coincide over [0,T ].
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Indistinguishability of Continuous-Time Systems

ya(t) = CeAtxa = CeAtxb = yb(t), for all t ∈ [0,T ]

t
0

ya(t)

yb(t)

T

Now, in principle, ya(t) and yb(t) could have a difference in the future.

However, we will see that if you are unable to distinguish between these
two states in the interval [0,T ], then you will never be able to distinguish
between these two states.
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Indistinguishability Condition

Rewriting we can say, two states xa and xb are indistinguishable in some
interval [0,T ] , T > 0 if

ya(t)− yb(t) = 0 , ∀t ∈ [0,T ]

(zero function)

CeAtxa − CeAtxb = 0 , ∀t ∈ [0,T ]

CeAt(xa − xb) = 0 , ∀t ∈ [0,T ]

t
0

ya(t)

yb(t)

ya(t)− yb(t)

T

First, notice that if a function is zero in some interval [0,T ], then all of its
time derivative will also be zero.

Second, recall that eAt is an analytic function (That is to say, eAt is equal
to its Taylor series expansion.)
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Indistinguishability Condition: Observability Matrix

Using these two facts we can now say two states xa and xb are
indistinguishable in some interval [0,T ] , T > 0 if

dk

dtk
[
CeAt(xa − xb)

]∣∣∣
t=0

= 0 for all k ≥ 0 where k is an integer

Therefore, if we write out this condition, we get

C (xa − xb) = 0 , since e0 = I

CA(xa − xb) = 0 , since
d

dt
eAt = AeAt

...

CAn−1(xa − xb) = 0 which is
dn−1

dtn−1

[
CeAt(xa − xb)

]∣∣∣
t=0

We can again stop at n − 1 because of the Cayley-Hamilton theorem.
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Observability Matrix

We can now summarise by saying two states xa and xb are
indistinguishable in some interval [0,T ] , for all T > 0 if

C
CA
CA2

...
CAn−1

 (xa − xb) = 0

This gives us the same ‘observability matrix’, O, as for discrete-time
systems.

Notice that since eAt is analytic, we have only been looking at properties
for t = 0. This means that our interval can be any positive length.
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Observability

We can now set xa = x̄ and xb = 0.

Therefore, we can say a continuous-time system

ẋ = Ax + Bu , y = Cx

is observable if all states can be distinguished from the zero state.

Which means

Observability ⇐⇒ rank O = rank


C
CA
CA2

...
CAn−1

 = n
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Energy: Observability Gramian

We are not going to cover the Observability Gramian in the module, but it
is interesting to take a quick look

Observability Energy: Similar to reachability, we can define an energy
measure for observability.

Reachability Gramian: Measures energy needed to reach a state.

Observability Gramian: Measures energy stored in the initial state.

Defined as:

Vt =

∫ t

0
eA

′τC ′︸ ︷︷ ︸CeAτ︸ ︷︷ ︸ dτ
We can now add to the observability conditions

Observability ⇐⇒ rank O = n ⇐⇒ Vt > 0 , ∀ t > 0 =⇒ det(Vt) ̸= 0

i.e if VT is strictly positive definite, the system is observable.
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Interpretation of VT

How can we understand the meaning of the Observability Gramian, Vt .

To understand the meaning we

x(0)′VT x(0) =

∫ t

0
x(0)′eA

′τC ′CeAτx(0)dτ

=

∫ t

0
y ′(t)y(t)dτ

=

∫ t

0
∥y(t)∥2dt (Energy of the output of the system)

This represents the energy of the output signal

This implies that the only state yielding zero energy is x(0) = 0
(provided the system is observable)
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Block Diagram: Extracting the Initial State

Given a continuous-time system

ẋ = Ax , y = Cx ′

Recall that

Vt =

∫ t

0
eA

′τC ′︸ ︷︷ ︸CeAτ︸ ︷︷ ︸ dτ
Then, we can construct the following block diagram

System eA
′tC ′

∫ t

0
/
∫ T

t
V−1
t

x(0)

x(0)
y(t)

CeAtx(0) Vtx(0)
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Block Diagram: Extracting the Initial State with Input

If we have an input signal, we simply need to cancel it at the output and
add the forced response at the end.

System eA
′tC ′

∫ T

t
V−1
t eAtu(t)

x(0)

x(t)
y(t)

− Vtx(0) x(0)

Challenges:

Noise sensitivity.

Precise cancellations are needed.

We will see an alternative approach to constructing an estimate of the
state in a later lecture.
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Structural Properties
We have now seen two (four for discrete-time systems) structural
properties

Reachability → [B,AB,A2B, . . . ,An−1B] (tall matrix)

Observability →


C
CA
CA2

...
CAn−1

 (wide matrix)

Notice that both matrices are constructed by multiplying powers of A
iteratively with B or C .

Now recall that the transposition of a matrix multiplication is

(XY )′ = Y ′X ′
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Matrix Transposition
Therefore the transpose of the observability matrix, O, gives us

O′ =
[
C ′ A′C ′ (A′)2C ′ · · ·

]
which is just the reachability matrix for another system ξ̇ = A′ξ + C ′v .

Likewise, the transpose of the reachability matrix, R, gives us

R ′ =


B ′

B ′A′

B(A′)2

...


which is just the observability matrix for another system ξ̇ = A′ξ and
η = B ′ξ.

We have just transposed our four matrices A,B,C and D and swapped
the roles of B and C .
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System Representation and Duality

Given the original system:

ẋ = Ax + Bu, y = Cx + Du (often called the primal system)

We define

ξ̇ = A′ξ + C ′v η = B ′ξ + D ′u (often called the dual system)

If we write the systems in complete matrix form we get[
A B
C D

]
primal system

[
A′ C ′

B ′ D ′

]
dual system

Note that the dual of the dual system returns to the original system.
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PBH Test for Observability

Give the system

ẋ = Ax , y = Cx =⇒
Dual

ξ̇ = A′ξ + C ′v

I now know that the dual system is reachable if

rank
[
sI − A′ C ′ ] = n′ , for all s /∈ Pλ(A

′)

But recall that whatever is reachable for the dual system is observable for
the original system.

Therefore, the PBH test for Observability is given by

rank

[
sI − A
C

]
= n , for all s /∈ Pλ(A) , recall Pλ(A

′) = Pλ(A)
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System Decomposition
We now want to analyse the decomposition of a system

σx = Ax , y = Cx

that is not observable.

This implies that the dual system

σξ = A′ξ + C ′v

is non-reachable.

There in some coordinates I can split the state ξ into two parts[
σξ1
σξ2

]
=

[
A′
11 A′

21

0 A′
22

] [
ξ1
ξ2

]
+

[
C ′
1

0

]
v

Then, taking the dual[
σz1
σz2

]
=

[
A11 0
A21 A22

] [
z1
z2

]
and y =

[
C1 0

] [z1
z2

]
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Observable and Unobservable Modes

Now we can say that the

The unobservable modes of the system are the eigenvalues of A22 for
which the observability matrix loses rank.

The observable modes of the system are the eigenvalues of A11 for
which the observability matrix loses rank.

σz1 = A11z1

σz2 = A21z1 + A22z2

y = C1z1

z1

z2

y = C1z1
Observable
Subsystem

Non-Observable
Subsystem
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Canonical Form for Observable Systems

An observable system is algebraically equivalent to:

σx̂ = Ao x̂ + Bou, y = Co x̂ + Dou,

where:

Ao =


0 0 · · · 0 −α0

1 0 · · · 0 −α1

...
...

. . .
...

...
0 0 · · · 1 −αn−1

 , Co =
[
0 · · · 0 1

]
.

where α0, α1, . . . , αn−1 are the coefficients of the characteristic
polynomial.

This canonical form highlights the structure of observable systems.
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Kalman Decomposition

Kalman Decomposition is not covered in this module but is in the notes.

Kalman Decomposition shows that the system can be partitioned into
four components:

▶ Reachable and Observable
▶ Reachable and Unobservable
▶ Unreachable and Observable
▶ Unreachable and Unobservable

The problem with transfer function representations is that they only model
observable and reachable components.

The state-space approach provides deeper insight into system properties.
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Implications for Control Design

In the coming lectures, we are going to look at ‘Control Design’

Control design exploits reachability and observability.

Two feedback design approaches:
▶ State feedback (requires full state information)
▶ Output feedback (requires state estimation)

Introduction to observers and filters for state estimation.

Next week, we will also review the answers for the QMPlus
(coursework 1) Quiz in the second part of the lecture.
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