Advanced Control Systems Lecture 6: Reachability and Controllability (Canonical Form and PBH Reachability Test)

Aidan O. T. Hogg

EECS, Queen Mary University of London

a.hogg@qmul.ac.uk

Spring 2025

Aidan O. T. Hogg (QMUL)

Advanced Control Systems

< 回 > < 回 > < 回 >

э

Electrical Network Example

Let's see how reachability plays out in practice by studying the reachability properties of an electrical network:

The input u is the voltage across the voltage source, and the output y is the current delivered by the voltage source.

Electrical Network Example: System Equations

We define the state variables

- x₁: voltage across the capacitor C
- x₂: current through the inductor L

Kirchhoff's laws yield

$$u = x_1 + R_1 C \dot{x}_1$$
, $u = R_2 x_2 + L \dot{x}_2$, $y = i = x_2 + \frac{u - x_1}{R_1}$

The system is, therefore, described by the equations

$$\dot{x}_{1} = -\frac{1}{R_{1}C}x_{1} + \frac{1}{R_{1}C}u$$
$$\dot{x}_{2} = -\frac{R_{2}}{L}x_{2} + \frac{1}{L}u$$

The output equation is

$$y = -\frac{1}{R_1}x_1 + x_2 + \frac{1}{R_1}u$$

3/38

Electrical Network Example: State-Space Equations

As a result, the state-space equations are

$$\dot{x} = Ax + Bu$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{R_1C} & 0 \\ 0 & -\frac{R_2}{L} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{R_1C} \\ \frac{1}{L} \end{bmatrix} u$$

and

$$y = Cx + Du$$
$$y = \begin{bmatrix} -\frac{1}{R_1} & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \frac{1}{R_1}u.$$

The system matrices are:

$$A = \begin{bmatrix} -\frac{1}{R_1C} & 0\\ 0 & -\frac{R_2}{L} \end{bmatrix}, \quad B = \begin{bmatrix} \frac{1}{R_1C}\\ \frac{1}{L} \end{bmatrix}, \quad C = \begin{bmatrix} -\frac{1}{R_1} & 1 \end{bmatrix}, \quad D = \mathbf{0}$$

Electrical Network Example: Reachability Matrix

$$A = \begin{bmatrix} -\frac{1}{R_1C} & 0\\ 0 & -\frac{R_2}{L} \end{bmatrix}, \quad B = \begin{bmatrix} \frac{1}{R_1C}\\ \frac{1}{L} \end{bmatrix}, \quad C = \begin{bmatrix} -\frac{1}{R_1} & 1 \end{bmatrix}, \quad D = \mathbf{0}$$

The reachability matrix is given by:

$$R = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} \frac{1}{R_1C} & -\frac{1}{R_1^2C^2} \\ \frac{1}{L} & -\frac{R_2}{L^2} \end{bmatrix}.$$

The determinant of R is:

$$det(R) = \left(\frac{1}{R_1C}\right) \left(-\frac{R_2}{L^2}\right) - \left(\frac{1}{L}\right) \left(-\frac{1}{R_1^2C^2}\right) = \frac{1}{LR_1^2C^2} - \frac{R_2}{R_1CL^2}$$
$$= \frac{1}{R_1CL} \left(\frac{1}{R_1C} - \frac{R_2}{L}\right)$$

э

イロト 不得 トイヨト イヨト

Electrical Network Example: Reachability Condition

The system is reachable (and controllable) if

$$\det(R) = \frac{1}{R_1 C L} \left(\frac{1}{R_1 C} - \frac{R_2}{L} \right) \neq 0$$

Therefore, the system is reachable (and controllable) if

$$\frac{1}{R_1C} \neq \frac{R_2}{L}$$

and the system is not reachable (and not controllable) if

$$\frac{1}{R_1C} = \frac{R_2}{L}$$

6/38

< ロ > < 同 > < 回 > < 回 > < 回 > <

Electrical Network Example: Physical Interpretation

We have shown that the system is not reachable (and not controllable) if

$$\frac{1}{R_1C} = \frac{R_2}{L}$$

But how does this relate to the physical system?

Notice that the time constants of the system are:

$$\tau_1 = R_1 C$$
, (time constant across $\frac{1}{R_1 C}$ component of the circuit)
 $\tau_2 = \frac{L}{R_2}$, (time constant across $\frac{R_2}{L}$ component of the circuit)

If $\tau_1 = \tau_2$, the system is unreachable because we are not able to independently control the voltage across the capacitor and the current through the inductor.

Aidan O. T. Hogg (QMUL)

Electrical Network Example: System Equations

If we go back to the system equations, we can see this

$$\dot{x}_1 = -rac{1}{R_1C}x_1 + rac{1}{R_1C}u$$

 $\dot{x}_2 = -rac{R_2}{L}x_2 + rac{1}{L}u$

If $\frac{1}{R_1C} = \frac{R_2}{L}$, then the two equations have the same coefficient for x_1 and x_2 so system can be rewritten as:

$$\dot{x}_1 = -\lambda x_1 + b_1 u$$
$$\dot{x}_2 = -\lambda x_2 + b_2 u$$

If we multiply both equations by b_2 and b_1 respectively, we get

$$b_2 \dot{x}_1 = -b_2 \lambda x_1 + b_2 b_1 u$$
$$b_1 \dot{x}_2 = -b_1 \lambda x_2 + b_1 b_2 u$$

If we now add these two equations

$$b_2\dot{x}_1 - b_1\dot{x}_2 = -b_2\lambda x_1 + b_1\lambda x_2$$

Electrical Network Example: System Equations

Now we can write this as

$$\overbrace{b_2x_1-b_1x_2}^{}=-\lambda(b_2x_1-b_1x_2)$$

We can now substitute in z to obtain

$$\dot{z}=-\lambda z, \hspace{1em}$$
 where $z=b_2x_1-b_1x_2$

Therefore, z (as we have seen in a previous lecture) is nothing more than

$$z = z(0)e^{-\lambda t}$$

That is to say that

$$b_2 x_1 - b_1 x_2 = z(0)e^{-\lambda t}$$

As $t \to \infty$, $z(0)e^{-\lambda t} \to 0$, therefore

 $x_1 = \frac{b_1}{b_2} x_2$ (the *v* across *C* is not independent of the *i* through *L*)

Electrical Network Example: Implications of reachability

• The system is not reachable/controllable because the voltage across the capacitor and the current through the inductor cannot be independently controlled

• As $t \to \infty$, $x_1(t) = \frac{B_1}{B_2} x_2(t)$

- Notice that small variations (e.g. temperature drift in resistances) can restore reachability/controllability
 - Energy considerations: if the system is nearly unreachable/uncontrollable, control requires high energy
 - Small perturbations lead to ż = −λz + εu (notice that a large input signal would be needed for small ε)
- Controllability is often termed a 'generic property' as almost all randomly chosen systems are controllable

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Canonical Controllable Form: System Representation

Given a system (continuous or discrete time):

$$\sigma x = Ax + Bu$$

- Single input assumption: $p = 1 \Rightarrow B$ is a column vector
- The system is assumed to be reachable

Reachability matrix:

$$R = \begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix}$$

Since the system is reachable, R is square and invertible such that

 $\det(R) \neq 0$

Canonical Controllable Form: Finding Vector L

We seek to find a L such that:

$$LR = L \begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix} = \begin{bmatrix} 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

This implies:

$$LB = 0$$
, $LAB = 0$, ... $LA^{n-2}B = 0$, $LA^{n-1}B = 1$

Therefore, we can write L as

$$L = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} R^{-1}$$

э

12/38

(本)

Canonical Controllable Form: New Coordinate System

We now define a new coordinate system that exploits the properties of L

$$z_1 = Lx$$
, $z_2 = LAx$, \cdots $z_n = LA^{n-1}x$

In matrix form:

Now, we need to prove that T is invertible. Well, we know that

$$TR = \begin{bmatrix} L \\ \vdots \\ LA^{n-1} \end{bmatrix} \begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix}$$

and R are both invertible. Therefore, T is invertible, since these are two square matices det(AB) = (det A)(det B)

Aidan O. T. Hogg (QMUL)

Advanced Control Systems

Spring 2025 13 / 38

Canonical Controllable Form: New Coordinate System Recall:

$$LB = 0, \quad LAB = 0, \quad \cdots \quad LA^{n-2}B = 0, \quad LA^{n-1}B = 1$$

$$TR = \begin{bmatrix} L \\ LA \\ LA^{2} \\ \vdots \\ LA^{n-1} \end{bmatrix} \begin{bmatrix} B & AB & A^{2}B & \dots & A^{n-1}B \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & LA^{n}B \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \cdots & \cdots & 1 \\ 1 & LA^{n}B & \cdots & \cdots & \cdots \end{bmatrix}$$

The determinant is det(*TR*) = $-1^{n-1} = \pm 1$

Aidan O. T. Hogg (QMUL)

э

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

New Coordinates

Now we could compute the transformed matrix $\hat{A} = TAT^{-1}$

• The issue is we need to know T^{-1}

Instead, we will take a different approach.

Recall that our new coordinates are defined as:

$$z_{1} = Lx,$$

$$z_{2} = LAx,$$

$$z_{3} = LA^{2}x,$$

$$\vdots$$

$$z_{n-1} = LA^{n-2}x,$$

$$z_{n} = LA^{n-1}x.$$

These are defined using the transformation matrix T.

Aidan O. T. Hogg (QMUL)

э

15 / 38

Time Derivative

Now let's consider $\dot{z}_1 = L\dot{x}$:

$$\dot{z}_1 = L\dot{x} = L(Ax + Bu) = \underbrace{LAx}_{z_2} + \underbrace{LB}_{0}u = z_2$$

Now let's consider $\dot{z}_2 = LA\dot{x}$:

$$\dot{z}_2 = LA\dot{x} = LA(Ax + Bu) = \underbrace{LA^2x}_{z_3} + \underbrace{LAB}_{0}u = z_3$$

Applying the same logic:

$$\dot{z}_{n-1} = LA^{n-2}\dot{x} = LA^{n-2}(Ax + Bu) = \underbrace{LA^{n-1}x}_{z_n} + \underbrace{LA^{n-2}B}_{0}u = z_n$$

Until

$$\dot{z}_n = LA^{n-1}\dot{x} = LA^{n-1}(Ax + Bu) = LA^nx + \underbrace{LA^{n-1}B}_{=1}u = LA^nx + u$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Applying Cayley-Hamilton

However, \dot{z}_n can be simplified using the Cayley-Hamilton theorem.

Cayley-Hamilton theorem states that

$$A^{n} = -\alpha_{n-1}A^{n-1} - \cdots - \alpha_{1}A - \alpha_{0}I.$$

Therefore substituting into \dot{z}_n gives

$$\dot{z}_n = \mathcal{L}[-\alpha_{n-1}\mathcal{A}^{n-1} - \dots - \alpha_1\mathcal{A} - \alpha_0\mathcal{I}]x + u$$
$$\dot{z}_n = [-\alpha_{n-1}\mathcal{L}\mathcal{A}^{n-1}x - \dots - \alpha_1\mathcal{L}\mathcal{A}x - \alpha_0\mathcal{L}x] + u$$

Therefore

$$\dot{z}_n = -\alpha_0 z_1 - \alpha_1 z_2 - \cdots - \alpha_{n-1} z_n + u.$$

э

System Description

This system is described by:

 $\sigma z_1 = z_2$ $\sigma z_2 = z_3$ \vdots $\sigma z_{n-1} = z_n$ $\sigma z_n = -\alpha_0 z_1 - \alpha_1 z_2 - \dots - \alpha_{n-1} z_n + u$

where $\alpha_0, \alpha_1, \ldots, \alpha_{n-1}$ are the coefficients of the characteristic polynomial.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Matrix Representation

The system can be rewritten in matrix form as:

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -\alpha_0 & -\alpha_1 & \dots & -\alpha_{n-2} & -\alpha_{n-1} \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

Observations:

- The system is still reachable/controllable after a change of coordinates.
- Reachability/controllability is not altered by a coordinate transformation.
- This pair (A, B) is known as the controllability canonical form.
- The characteristic polynomial coefficients define the system dynamics.

Efficient Computation of Canonical Form

Rewriting the system in canonical form is actually now very straightforward.

Steps to derive the canonical form:

- Compute the reachability matrix.
- Check that it is full rank.
- Directly construct the canonical form without matrix inversion.
- Copy the characteristic polynomial coefficients directly into the last row.

Simple!

Feedback Control

This canonical form is useful because

$$\sigma z_n = -\alpha_0 z_1 - \alpha_1 z_2 - \dots - \alpha_{n-1} z_n + u$$

and we can use feedback to set u:

$$u = \alpha_0 z_1 + \alpha_1 z_2 + \dots + \alpha_{n-1} z_n + v$$

Which results in:

$$\dot{z}_n = v$$

We will see in later lectures why this is so useful, but it is because

- This feedback can cancel the characteristic polynomial terms.
- Therefore, the system can be modified dynamically using control.
- Enables pole placement.

21/38

Block Diagram Representation

The canonical form structure can also be represented by a block diagram:

- *z_n* propagates through the system through a series of integrators (or shift registers in discrete time).
- The characteristic polynomial coefficients define system behaviour.

Canonical Form for Non-Reachable Systems

We would now like to discuss a canonical form for non-reachable systems.

Suppose we are given a system

$$\sigma x = Ax + Bu$$

where the rank of the reachability matrix R is given by

$$\operatorname{rank}(R) = \rho, \quad \rho < n$$

This implies that the system is not reachable.

Our aim now is to try and separate the reachable and non-reachable components of the system

Transformation of the System

To separate the reachable and non-reachable components, we define new coordinates $\hat{\boldsymbol{x}}$

 $x = L\hat{x}$

where transformation matrix L should incorporate information from the reachability matrix R.

Since R has ρ linearly independent columns, we construct L as:

$$L = \begin{bmatrix} L_1 & L_2 \end{bmatrix},$$

where:

- L₁ consists of ρ linearly independent columns from R (spanning the im(R)).
- L_2 consists of $n \rho$ additional columns chosen to make L invertible.
 - ► A convenient choice for L₂ is columns with mostly zeros and a single one in each row

Aidan O. T. Hogg (QMUL)

New System Representation

Recall that applying the coordinate transformation gives the system equations

$$\dot{\hat{x}} = \underbrace{L^{-1}AL}_{\hat{A}}\hat{x} + \underbrace{L^{-1}}_{\hat{B}}Bu$$

there the transformed system matrices are

$$\hat{A} = L^{-1}AL, \quad \hat{B} = L^{-1}B$$

To simplify the computation, we rewrite the equations to remove the inverse of L

$$L\hat{A} = AL, \quad L\hat{B} = B$$

Block Structure of \hat{B}

Since L_{11} spans the image of R, and B lies in the Im(R), we partition L and analyse its effect on \hat{B} :

$$L\hat{B} = B \implies \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} \hat{B}_1 \\ \hat{B}_2 \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$

where L_{11} is a square matrix with dimensions $\rho \times \rho$ and L_{22} is also a square matrix with dimensions $(n - \rho) \times (n - \rho)$

We know that $B \subset Im(R)$, therefore, $B_2 = 0$

$$\hat{B} = \begin{bmatrix} \hat{B}_1 \\ 0 \end{bmatrix}$$

26 / 38

Block Structure of \hat{A}

A similar analysis applied to \hat{A} reveals a block structure

$$L\hat{A} = AL \implies \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} \hat{A}_{11} & \hat{A}_{12} \\ \hat{A}_{21} & \hat{A}_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix}$$

First we see that if we multiply A_{11} by L_{11} we get AIm(R) = Im(R) therefore

$$\begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} \hat{A}_{11} & \hat{A}_{12} \\ \hat{A}_{21} & \hat{A}_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} = \begin{bmatrix} \operatorname{Im}(R) \\ \\ \operatorname{Im}(R) \end{bmatrix}$$

Now see that L_{12} multiply \hat{A}_{21} will not be in the Im(R). So we need $\hat{A}_{21} = 0$.

System Representation using \hat{A} and \hat{B}

So, the new system can be written in the following form

$$\sigma \hat{x} = \begin{bmatrix} \hat{A}_{11} & \hat{A}_{12} \\ 0 & \hat{A}_{22} \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} + \begin{bmatrix} \hat{B}_1 \\ 0 \end{bmatrix} u$$

So, the equations of the system are

 \hat{X}_1

 \hat{x}_2

Non-Reachable Subsystem $(n - \rho \text{ states})$

See that there is no connection between u and \hat{x}_2 , so if

$$\hat{x}_2(0)=0\implies \hat{x}_2(t)=0,\quad t\ge 0$$

Aidan O. T. Hogg (QMUL)

Checking Reachability of the Reachable Subsystem

To verify that the reachable subsystem is indeed reachable, we must analyse the reachability matrix, \hat{R} when

$$\hat{A} = \begin{bmatrix} \hat{A}_{11} & \hat{A}_{12} \\ 0 & \hat{A}_{22} \end{bmatrix}, \qquad \hat{B} = \begin{bmatrix} \hat{B}_1 \\ 0 \end{bmatrix}$$

where $\hat{R} = \begin{bmatrix} \hat{B} & \hat{A}\hat{B} & \hat{A}^2\hat{B} & \cdots \end{bmatrix}$.

Therefore \hat{R} is

$$\hat{R} = \left[\begin{array}{c|c} \hat{B}_1 \\ 0 \end{array} \middle| \begin{array}{c} \hat{A}_{11} \hat{B}_1 \\ 0 \end{array} \middle| \begin{array}{c} \hat{A}_{11}^2 \hat{B}_1 \\ 0 \end{array} \middle| \begin{array}{c} \cdots \\ 0 \end{array} \right]$$

We know that $\operatorname{rank}(R) = \rho \iff \operatorname{rank}(\hat{R}) = \rho$ because $R = L\hat{R}$.

Checking Reachability of the Reachable Subsystem Therefore rank($[\hat{B} \ \hat{A}\hat{B} \ \hat{A}^2\hat{B}_1 \ \cdots]) = \rho$ which means the system $\sigma \hat{x}_1 = \hat{A}_{11}\hat{x} + \hat{B}_1u$ is reachable.

Note that the $\hat{A}_{12}\hat{x}_2$ term will always be zero if you start at the origin.

Now, if we look at the eigenvalues, we know that

$$\lambda(A) = \lambda(\hat{A})$$

that is to say the eigenvalues of A are the same as the eigenvalues of \hat{A} . However, because the \hat{A} is upper triangular, we can also say

$$\lambda(\hat{A}) = \lambda(\hat{A}_{11}) \cup \lambda(\hat{A}_{22})$$

- $\lambda(\hat{A}_{11})$ are often called the reachable modes of the system
- $\lambda(\hat{A}_{22})$ are often called the unreachable (or fixed) modes of the system

Fixed Modes and Control Implications

- Eigenvalues correspond to fixed modes that cannot be altered by feedback. Essentially these modes remain unchanged regardless of any control strategies
- A reachable mode is something that you may not see in the input-output behaviour of the system
- Interestingly, in terms of transfer functions, you will typically have an unreachable mode when you get a pole-zero cancellation
 - The evolution of these modes still needs to be controlled in some way, even if we don't see it externally
 - Hence, you would have been told in the 'control systems' module that pole-zero cancellations can only occur in the left half of the complex plane for continuous-time systems
 - If you cancel a pole-zero pair in the unstable region, you may get an unreachable mode that is unstable

31 / 38

イロト 不得 トイヨト イヨト 二日

Characterizing the reachable mode is difficult because it requires constructing a matrix L and do a coordinate transformation.

However, there is a much simpler alternative to check reachability and it is called the **PBH test**.

The PBH test directly determines the presence of non-reachable modes without the need for matrix transformations.

Reachability Pencil

We are given the usual system:

$$\sigma x = Ax + Bu$$

Then, we define something called the *reachability pencil*.

The reachability pencil is a new matrix that is given by

$$\left[\begin{array}{c|c} sI - A & B \end{array} \right]$$

which is a polynomial matrix with n rows and n + p columns.

The PBH test states that we can check reachability directly by analysing the properties of the *reachability pencil*

$$\mathsf{System} \,\, \mathsf{is} \,\, \mathsf{Reachable} \,\, \Longleftrightarrow \,\, \mathsf{rank}(\left[\begin{array}{c|c} \mathit{sl} - \mathit{A} \end{array} \middle| \begin{array}{c} \mathit{B} \end{array} \right]) = \mathit{n}, \quad \forall \mathit{s} \in \mathbb{C}.$$

Reachability Condition

We now have a test for reachability

System is Reachable \iff rank($\begin{bmatrix} sl - A & B \end{bmatrix}$) = n, $\forall s \in \mathbb{C}$.

However, checking for all $s \in \mathbb{C}$ is impractical since there are infinitely many values.

However, a key observation simplifies this:

- If s is not an eigenvalue of A, then sI A is full rank.
- We only need to check for eigenvalues of A rank($[sl - A \mid B]$) = n, $\forall s \in \lambda(A)$.

If there exists an \bar{s} such that:

$$\operatorname{rank}(\left[\begin{array}{c|c} \overline{s}I - A & B \end{array} \right]) < n$$

the system is not reachable, and \bar{s} is an unreachable mode of the system.

Reachability Pencil Condition

If a system $\sigma x = Ax + Bu$ is not reachable, we would like to prove that

$$\operatorname{rank}([sI - A | B]) < n, \text{ for some } s$$

We know that if the system is not reachable if $rank(R) = \rho < n$.

and that can decompose it into reachable and unreachable components

$$\sigma \hat{x} = egin{bmatrix} \hat{A}_{11} & \hat{A}_{12} \ 0 & \hat{A}_{22} \end{bmatrix} egin{bmatrix} \hat{x}_1 \ \hat{x}_2 \end{bmatrix} + egin{bmatrix} \hat{B}_1 \ 0 \end{bmatrix} \iota$$

Then, the reachability pencil of the decomposed system is

$$\begin{bmatrix} sI - \hat{A}_{11} & -\hat{A}_{12} & \hat{B}_1 \\ 0 & sI - \hat{A}_{22} & 0 \end{bmatrix}$$

If \bar{s} is an eigenvalue of A_{22} , then the reachability pencil loses rank (the bottom row is all zeros), confirming non-reachability and that rank(R) < n.

Aidan O. T. Hogg (QMUL)

So why is the PBH test so useful?

- No need to calculate the reachability matrix
- No need for explicit transformation into reachable/unreachable components
- We simply check where the reachability pencil loses rank

Summary

So what have we learnt about Reachability and controllability?

- Reachability and controllability are equivalent for continuous-time systems but differ in discrete time when A has zero eigenvalues.
- These properties can be tested numerically without explicit trajectory analysis.
- If a system is not reachable, it can be decomposed into reachable and unreachable components.
- The reachability pencil test helps identify the unreachable (hidden) modes of the system.

In the next lecture, we will look at analysing state-to-output interactions, following a similar approach.

3

Next Week

There will be a QMPlus quiz next week (Week 7 - Reflection Week) worth 20% of the module

- You will have a **90 minutes** to do the quiz but can take the quiz at any point in Week 7 (05/03-11/03)
- The quiz covers all the content from weeks 1-5 (i.e. the content from this lecture will not be in the quiz)

There will be no lecture or tutorial class next week!