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Input-to-state properties

The goal is to describe the relationship between u(t) → x(t).

There are two perspectives to this problem:

The state at t = 0 is given, and we would like to identify all states
that can be reached in the future

The state at t = T is given, and we would like to identify all initial
states x(0) that can be driven to the final state
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Reachability

Reachability: Given x(0), find all future states reachable by input
sequences.

x(0)

x(T )
u1(t)

u2(t)

The set of states that can
be reached at time T
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Controllability

Controllability: Given x(T ), find all initial states x0 that can be driven to
x(T ).

x(T )
x(0)

The set of states that can
be steered/controlled to x(T )
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Reachability vs Controllability

Observe what happens if we reverse the arrow of time:

x(0)

x(T )
u1(t)

u2(t)
x(T )

x(0)

Reverse the arrow of time

Reachability vs Controllability are equivalent in continuous-time
systems but can differ in discrete-time systems.

Recall that continuous-time systems are always reversible, but
discrete-time systems are not.
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Linearity: Reachability vs Controllability

For linear systems, the set of states that can be reached or controlled
to have a special structure: linear subspaces of the state-space.

x(0) = 0

x(T )
u1(t)

u2(t)

Linear subspace of
the state-space

x(T ) = 0
x(0)

Linear subspace of
the state-space

Often, for linear systems, we also simplify the analysis by setting x(0) = 0
(to the origin of the state space).

Aidan O. T. Hogg (QMUL) Advanced Control Systems Spring 2025 6 / 41



Phase Portrait: Reachability vs Controllability

Reachability Controllability

x2

x3

x1

x(T )

x(0)
x2

x3

x1

x(0)

x(T )
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Phase Portrait: Reachability vs Controllability

Reachability Controllability

x2

x3

x1

x(T )

x(T̃ )

x(0)
x2

x3

x1

x(0)

x̃(0)

, x(T )x(T̃ )
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Reachability: Discrete-Time Systems

Let’s start by looking at the reachability properties of a discrete-time
system

x+ = Ax + Bu.

Reachability and controllability depend on A and B.

States that can be reached in one step are x [1], and this can be written as:

x [1] = Ax [0] + Bu[0] = Bu[0] , (since x [0] = 0)
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Reachability: Single-Input System - Step 1

What we would like to do is remove the effect of u[0].

Let’s consider a single-input system, i.e. p = 1 and B =

...
...

 is a vector.

x(1) = Bu[0]

x2

x3

x1

B

where B is the direction of travel
and u[0] is the distance (positive
or negative) along the direction.

The set of points that can be reached in 1 step is linear space,
Im(B) = R1 (i.e. all the points on the red line).
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Reachability: Single-Input System - Step 2
States that can be reached in two steps are x [2], and this can be written
as:

x [1] = Ax [0] + Bu[0] = Bu[0]

x [2] = Ax [1] + Bu[1] = Bu[1] + ABu[0]

=
[
B AB

] [u[1]
u[0]

]
= Im(

[
B AB

]
) = R2

x2

x3

x1

B

AB

R2 is the plane spanned by A and AB.
i.e. the Im(

[
B AB

]
)
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Reachability Subspaces

Notice that clearly, if a state x [1] can be reached in one step, then it can
also be reached in two steps.

This follows from the observation that we can take a step that effectively
keeps us at zero (i.e., by choosing u[0] = 0) and then take a second step
to reach x [2].

Thus, every element of R1 is also in R2, implying:

R1 ⊆ R2

The reverse is not necessarily true. There clearly exist states that require
exactly two steps to be reached but cannot be reached in a single step.

This means there exist elements in R2 that are not in R1.
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Reachability: Single-Input System - Step 3

States that can be reached in three steps are x [3], and this can be written
as:

x [3] = Ax [2] + Bu[2]

x [3] = Bu[2] + A(Bu[1] + ABu[0]) = Bu[2] + ABu[1] + A2Bu[0]

=
[
B AB A2B

] u[2]u[1]
u[0]

 = Im(
[
B AB A2B

]
) = R3

Where

R1 ⊆ R2 ⊆ R3
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Reachability: Single-Input System - Step i

States that can be reached in three step are x(i), and this can be written
as:

R1 = Im(B)

R2 = Im(
[
B AB

]
)

R3 = Im(
[
B AB A2B

]
)

Ri = Im
[
B AB A2B · · · Ai−1B

]
Where

R1 ⊆ R2 ⊆ R3 · · · ⊆ Ri
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Reachability: Step Termination

But when do we stop?

Cayley-Hamilton Theorem: if pλ(λ) = det(λI − A) then pλ(A) = 0

Therefore is we have λn + α1λ
n−1 + · · ·+ αn = 0 then

0 = An + α1A
n−1 + · · ·+ Iαn

−An = α1A
n−1 + · · ·+ Iαn

i.e. An can be written as a linear combination of lower powers of A.

Therefore if i = n then

Rn = Im
[
B AB A2B · · · An−1B

]
Rn+1 = Im

[
B AB A2B · · · An−1B AnB

]
where

R1 ⊆ R2 ⊆ R3 · · · ⊆ Rn = Rn+1
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Reachability Matrix

Given
x+ = Ax + Bu.

R1: set of states reached in 1 step
...
Rn: set of states reached in n steps

R1 = Im(B)
...
Rn = Im(

[
B AB · · · An−1B

]
)

We call R =
[
B AB · · · An−1B

]
the reachability matrix of the

system.

System is reachable ⇐⇒ Any state can be reached in at most n steps.

This is equivalent to Im(R) = the state-space (i.e. rank R = n)
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Reachability of Discrete-Time Systems

What about the dimensions of R =

[
B︸︷︷︸
n×p

AB︸︷︷︸
n×p

· · · An−1B︸ ︷︷ ︸
n×p

]
.

Notice if p = 1 then R is a square matrix and m > 1 then R is a wide
matrix (i.e. has more columns than rows).

Therefore if p = 1 then the rank R ⇐⇒ det(R) ̸= 0.

So, to compute the reachability of a single input discrete-time system, we
just have to compute the determinate of R.
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Computing the Reachability Matrix

There are two approaches when it comes to computing the reachability
matrix:

R =

[
B AB A2B︸︷︷︸

A(AB) or (A2)B

A3B︸︷︷︸
A(A2B) or (A3)B

· · ·
]

(A2)B → is a matrix × matrix × vector

A(AB) → is a matrix × vector (because we have computed AB)

Likewise

(A3)B → is a matrix × matrix × matrix × vector

A(A2B) → is a matrix × vector (because we have computed A2B)

So the second way is far more efficient!
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Discrete-Time System Example

Consider the system:
x+ = Ax + Bu

with matrices

A =

0 0 0
0 0 0
0 0 1

 , B =

01
1



The set of states that can be reached in 1 step is given by the image of B:

R1 = Im(B) =

01
1


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Discrete-Time System Example

For two steps, we compute:

R2 = Im(B,AB)

Performing the multiplication:

R2 =

0 0
1 0
1 1

 = R3, since A(AB) =

00
1


where this vector is already in R2, we conclude R3 = R2, meaning the
reachable set has not expanded further.
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Discrete-Time System Example: Geometric Interpretation

x2

x1

x3

BAB

R2 = R3 is the plane spanned by
A and AB, i.e. the Im(

[
B AB

]
)

This makes sense if you look back at

A =

0 0 0
0 0 0
0 0 1

 , B =

01
1


because

x+1 = 0
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Discrete-Time System Example: Discussion

Imagine we change the system slightly

A =

2 0 0
0 0 0
0 0 1

 , B =

01
1

 ,

The reachability matrix does not change (the system is not reachable), but
we now have dynamic behaviour in x1 if we start in start at a non-zero x1,

x+1 = 2x1.

At each step, x1 evolves independently (e.g., doubling at each step), but
the input signal does not influence this part of the system.
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Reachability in Continuous-Time Systems

Let’s now characterise the reachability and controllability of linear
continuous-time systems.

Recall: Continuous-time systems are reversible, implying equivalence
between reachability and controllability.

Consider the system:
ẋ = Ax + Bu.

The set of reachable states at time T is:

x(T ) =

∫ T

0
eA(T−τ)Bu(τ) dτ, for u(t), t ∈ [0,T ].

This equation is the Lagrange formula for state transition, where
x(0) = 0, so only the forced response remains.
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Phase Portrait of Reachability in Continuous-Time Systems

x2

x3

x1

x(T )

x(T̃ )

x(0) = 0

Note:

We start at an initial state of zero, i.e., x(0) = 0

Apply an input u(t) to drive the state to a point at time T

Different u(t) yield different reachable states

Continuous-time systems evolve over time intervals, not discrete steps
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Reachability of Continuous vs Discrete Time Systems

The set of reachable states at time T is:

x(T ) =

∫ T

0
eA(T−τ)Bu(τ) dτ, for u(t), t ∈ [0,T ]

Unlike discrete-time systems (which use sums), continuous-time
reachability involves an integral.

The presence of the matrix exponential, eA(T−τ), complicates analysis
compared to discrete-time cases.

Our aim now is to capture the reachability properties in such a way that
we are able to remove time.

Let’s start by ignoring u(t) and just focusing on eA(T−τ)B.
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Simplifying the Reachability Expression

Recall that eAt by definition is:

eAt = I + At +
A2t2

2!
+ · · ·+ An−1tn−1

(n − 1)!
+

Antn

n!
+

An+1tn+1

(n + 1)!
+ . . .

However, using the Cayley-Hamilton theorem, we know that

An = −α0I − α1A− α2A
2 · · · − αn−1A

n−1.

Therefore

eAt = I + At +
A2t2

2!
+

A3t3

3!
+ · · ·+ An−1tn−1

(n − 1)!
+

−
[
α0I

tn

n!
+ α1A

tn

n!
+ α2A

2 t
n

n!
+ · · ·+ αn−1A

n−1 t
n

n!

]
−
[
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

]
−

...
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Simplifying the Reachability Expression

If we gather terms together

eAt = I + At +
A2t2

2!
+

A3t3

3!
+ · · ·+ An−1tn−1

(n − 1)!
+

−
[
α0I

tn

n!
+ α1A

tn

n!
+ α2A

2 t
n

n!
+ · · ·+ αn−1A

n−1 t
n

n!

]
−
[
· · · I · · ·A · · ·A2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

]
...

Rewriting the Exponential:

eAt = φ0(t)I + φ1(t)A+ · · ·+ φn−1(t)A
n−1

So we have now been able to go from the exponential, eAt , to an object
that only contains powers of A from 0 to n − 1.
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Simplifying the Reachability Expression

So, the expression for the set of reachable states at time T is:

x(T ) =

∫ T

0
eA(T−τ)Bu(τ) dτ, for u(t), t ∈ [0,T ]

But now using our simplification of eAt , we obtain:

x(T ) =

∫ T

0

[
φ0(T − τ)I + φ1(T − τ)A+ · · ·+ φn−1(T − τ)An−1

]
Bu(τ) dτ

Notice that φ0(T − τ), φ1(T − τ), · · · φn−1(T − τ). are functions (they
are not vectors), so we can write:

x(T ) =

∫ T

0

[
Bφ0(T − τ)u(τ) + ABφ1(T − τ)u(τ) + · · ·+ An−1Bφn−1(T − τ)u(τ)

]
dτ
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Expression for Reachability

x(T ) =
[
B AB . . . An−1B

]︸ ︷︷ ︸
Reachability Matrix


∫ T
0 φ0(T − τ)u(τ) dτ∫ T
0 φ1(T − τ)u(τ) dτ

...∫ T
0 φn−1(T − τ)u(τ) dτ



The first term is nothing more than the reachability matrix:

R =
[
B AB . . . An−1B

]
The second term in the expression captures the influence of the input
u(t).

So, we have been able to separate reachability analysis from explicit time
dependence.
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Expression for Reachability: Interpretation

This can be rewritten as:

x(T ) = R


∫
· · ·∫
· · ·
...

 ⇐⇒ x(T ) ∈ Im(R)

where R is the reachability matrix

Therefore, if x(T ) /∈ Im(R), then x(T) cannot be reached in time T

But R is independent of time, so we can actually say,
if x(T ) /∈ Im(R), then x(T) cannot be reached in any positive time

However, we still do not know when x(T ) ∈ Im(R) if a u(t) exists that is
able to drive x(0) to X (T )
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Side Point: Continuous vs Discrete Time Systems

Notice for continuous-time systems, time is essentially not important.

If a state can be reached in one second, it can be reached in one
millisecond, one hour, or one year, given the appropriate input.

In continuous-time systems, the reachability matrix R does not depend on
time, which is a key difference from discrete-time systems.
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Reachability Gramian

If x(T ) ∈ Im(R), we still need to verify whether we can assign the
necessary linear combination of the columns of R.

We do this by defining the reachability Gramian:

Wt =

∫ t

0
eA(t−τ)︸ ︷︷ ︸

n×n

B︸︷︷︸
n×p

B ′︸︷︷︸
p×n

eA
′(t−τ)︸ ︷︷ ︸
n×n

dτ

Wt is a square matrix n × n

W0 = 0

Wt = W ′
t (Symmetric) and Wt ≥ 0 (Positive semi-definite)

▶ A matrix M = M ′ is positive semi-definite if xTMx ≥ 0, for all x ∈ Rn

Im(Wt) = Im(R) for all t > 0
▶ A non-trivial property that we won’t prove
▶ Very important property as it relates a matrix that depends on

time, Wt , to one that does not, R
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Selecting the Input Signal

Given:

x(T ) =

∫ T

0
eA(T−τ)Bu(τ)dτ

Choosing:
u(τ) = B ′eA

′(T−τ)β

where β is a vector and a free parameter.

This leads to:

x(T ) =

∫ T

0
eA(T−τ)BB ′eA

′(T−τ)βdτ ⇐⇒ x(T ) = WTβ

Thus, X is a linear combination of the columns of WT

If we pick x(T ) ∈ Im(R) then x(T ) ∈ Im(WT )
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Reachability Condition

Therefore, given
ẋ = Ax + Bu

x(T ) ∈ Im(R), ⇐⇒ x(T ) can be reached in any T > 0

The system is reachable if all points can be reached for any T > 0

Reachability ⇐⇒ Im(R) = Rn ⇐⇒ rank(R) = n ⇐⇒ Wt > 0

Wt > 0 ⇐⇒ Wt is invertible
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Reachability Gramian and Invertibility

So we have picked a special selection of u(t) = B ′eA
′(T−t)β and shown

x(T ) = WTβ

But if W (T ) is invertible then

β = W−1
T x(T )

Therefore the input signal that drives x(t) from 0 to x(T ) in time T > 0 is

u(t) = B ′eA
′(T−t)W−1

T x(T )

Note:

For small T , WT becomes small and its inverse, W−1
T large

Theoretically, we can steer from 0 to x̄ in arbitrarily small time

However, the required input energy increases as the interval shrinks
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Continuous-Time System: Controllability vs Reachability

Consider the system:

ẋ = Ax + Bu, x(0) is given, x(T ) = 0

Applying Lagrange’s equation:

0 = eAT x(0) +

∫ T

0
eA(T−τ)Bu(τ)dτ

−eAT x(0) =

∫ T

0
eA(T−τ)Bu(τ)dτ

So, x(0) is controllable to 0 in some time T > 0 if −eAT x(0) is reachable
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Controllability Condition: Continuous-Time Systems

If −eAT x(0) is reachable then

eAT x(0) ∈ Im(R) ⇐⇒ x(0) ∈ e−AT Im(R)

But e−AT just contains elements such as I ,A,A2, · · · and R just contains
elements such as B,AB,A2B, · · ·

x(0) ∈ e−AT Im(R) ⇐⇒ x(0) ∈ Im(R)

So, x(0) is controllable if x(0) ∈ Im(R). Therefore, reachability and
controllability are exactly the same for a continuous-time system.
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Controllability Condition: Discrete-Time Systems

For discrete-time systems, e−AT becomes [A−1]k , which is not invertible
when you have eigenvalues at zero.

We have already seen that eigenvalues at zero for discrete-time systems
have a very strange behaviour, such that you can reach zero in finite time.

A state x [k] is controllable to zero in k steps if there exists an input
sequence u[0], u[1], · · · , u[k − 1] that drives the state from x [k] to 0

0 = Akx [k] +
[
B AB · · · Ak−1B

]


u[k − 1]
u[k − 2]

...
u[0]



Aidan O. T. Hogg (QMUL) Advanced Control Systems Spring 2025 38 / 41



Controllability Condition: Discrete-Time Systems

Equivalently

−Akx [k] =
[
B AB · · · Ak−1B

]


u[k − 1]
u[k − 2]

...
u[0]


This implies that x [k] is controllable if the state −Akx [k] is reachable in k
steps, hence if

Akx [k] ∈ Im(R)

Therefore, a linear, discrete-time system is controllable in n steps if

Im(An) ⊆ Im(R)
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Controllability Condition: Discrete-Time Systems

For discrete-time systems, the reachability and controllability properties are
NOT equivalent:

1 Reachability =⇒ controllability
▶ Reachability implies Im(R) = the state-space from which it follows that

Im(An) ⊆ Im(R), so the system will be controllable.

2 Controllability ≠⇒ reachability
▶ For example, A = 0 and rank B < n, then:

rank
[
B AB · · · An−1B

]
= rank

[
B 0 · · · 0

]
< n

this system is not reachable even if it is controllable

3 If A is a full rank matrix, then the reachability and the controllability
are the same for discrete-time systems.
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Conclusion

Reachability and controllability are fundamental properties in control
theory

The reachability Gramian plays a key role in system analysis

Continuous-time systems: reachability ⇐⇒ controllability

Discrete-time systems: reachability =⇒ controllability
but controllability ≠⇒ reachability
(due to possible eigenvalues at zero)
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