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Introduction to Linear Systems

Standard Equations:

σx = Ax + Bu

y = Cx + Du

Components:

x : State (internal variable of the system)

u: Input (external action applied to the system)

y : Output (measurable response of the system)
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Continuous vs. Discrete-Time Systems

Continuous-Time Systems:

σ = ẋ (time derivative of x)

Discrete-Time Systems:

σ = x+ (state evolves as: x [k + 1] = Ax [k] + Bu[k])

Aidan O. T. Hogg (QMUL) Advanced Control Systems Spring 2025 3 / 29



Internal Properties of Linear Systems

In this module, we will focus on the following properties:

Internal: Characteristics of matrix A

Input-to-State: Dependent on (A,B)

State-to-Output: Governed by (A,C )

In this lecture, we will focus on the internal properties of the system
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State Trajectories: Continuous-Time Systems

System Behavior:

Initial condition: x(0) = x0

Input: u(t) for t ≥ 0

State Evolution:

ẋ(0) = Ax0 + Bu(0)

Velocity at t = 0 represented as a vector in state space
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Trajectories in State Space

Continuous-Time Systems:

Smooth curve in state space

Discrete-Time Systems:

Sequence of states: x(0), x(1), x(2), . . .
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Trajectories

Trajectory:

Trajectory = {x(t) : t ≥ 0}

A set of points in state space

Evolution depends on initial state x0 and input u(t)
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Motions

Motion:

The pair (t, x(t)). i.e. the state and the time it is visited

For example

Trajectory: Train’s path from London to Manchester

Motion: Train’s path with arrival and departure times
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Discrete vs. Continuous Systems

Continuous Systems:

Physical systems (e.g., mechanical systems, celestial orbits)

Discrete Systems:

Digital systems or sampled physical systems

Example: Optimization algorithms or clocked circuits
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Special Trajectories and Motions

Certain trajectories and motions reveal intrinsic properties of linear
systems

In linear systems, these special cases generalize to other trajectories

Understanding these trajectories offers deeper insights into system
behaviour
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Equilibrium of Linear Systems

Linear systems share properties across all trajectories

Equilibrium: A specific trajectory where the system state remains
constant

Originates from analytical mechanics, where equilibrium refers to a
state of no motion
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Definition of Equilibrium

Given:

Initial condition: x(0) = x0

Constant input: u(t) = u0

Definition: An equilibrium is a point x0 such that:

x(t) = x0 ∀ t ≥ 0

Graphical Representation:

Continuous-time: Straight line parallel to the t-axis in (x1, x2, t) space

Discrete-time: Discrete points along the same straight line
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Characterizing Equilibrium

Continuous-time system:

ẋ = Ax + Bu, y = Cx + Du

Steps:

1 If x(t) is constant, ẋ(t) = 0

2 Substituting: 0 = Ax0 + Bu0
3 Solve: −Ax0 = Bu0

Solution:

If A is invertible: x0 = −A−1Bu0.

If det(A) = 0:
▶ No solution, or
▶ Infinitely many solutions
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Discrete-Time Systems

Discrete-time system:

x [k + 1] = Ax [k] + Bu[k]

Equilibrium: x0 satisfies:

x0 = Ax0 + Bu0

Rearranging:
(I − A)x0 = Bu0

Solution:

If det(I − A) ̸= 0: x0 = (I − A)−1Bu0
If det(I − A) = 0:

▶ No equilibrium, or
▶ Infinitely many equilibria
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Continuous-Time vs Discrete-Time Systems

Differences:

Continuous: Check det(A) and solve Ax0 + Bu0 = 0

Discrete: Check det(I − A) and solve (I − A)x0 = Bu0

Therefore

Eigenvalues at 0 (continuous) or 1 (discrete) are critical

These eigenvalues affect steady-state performance and control design
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Example: Continuous-Time System

System:
ẋ1 = x2, ẋ2 = −x2 + u

Step 1: Formulate Matrices

A =

[
0 1
0 −1

]
, B =

[
0
1

]

Step 2: Check Determinant

det(A) = 0 ⇒ A is not invertible
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Example: Solution

Equilibrium Conditions:

0 = x2, 0 = −x2 + u

Case 1: u = 0

x2 = 0, x1 can take any value

Equilibrium Points: {(x1, 0) | x1 ∈ R}

Case 2: u ̸= 0

No equilibrium exists
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Some observations

Equilibrium analysis involves solving linear equations

Eigenvalues at 0 (continuous) or 1 (discrete) are crucial for control
design

Unlike linear systems, non-linear systems may exhibit multiple distinct
equilibria
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Computation of Trajectories for Linear Systems

How do we compute trajectories for linear systems with
time-varying inputs?

Given the state equation:
ẋ = Ax + Bu

where x(0) in the initial state and u(t) in the input for all t ≥ 0

We want to find x(t) for t ≥ 0

In other words, we want to find all future values of the state
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Case 1: A = 0

State equation:

ẋ = Bu

Solution:

x(t) = x(0) +

∫ t

0
Bu(τ) dτ

Contribution from initial state: x(0)

Contribution from input: Integral term
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Case 2: A = α (scalar)

State equation:

ẋ = αx

Solution:

ln
x(t)

x(0)
= αt

x(t) = x(0)eαt

Contribution from initial state: x(0)

Contribution from the internal properties: A = α
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General Case: Matrix A

State equation:
ẋ = Ax

Define a matrix exponential:

eAt = I + At +
A2t2

2!
+

A3t3

3!
+ . . .

This definition is a tool to solve the general case for matrix A
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Properties of Matrix Exponential

Property 1: Commutativity with A

eAtA = AeAt

Property 2: Time derivative

d

dt
eAt = AeAt

Analogous to scalar exponential properties

Many more properties shown in the module notes

Aidan O. T. Hogg (QMUL) Advanced Control Systems Spring 2025 23 / 29



Solving the Differential Equation

State equation:
ẋ = Ax + Bu, where x(0) = x0

Define:
z(t) = e−Atx(t)

Therefore:

ż = e−AtBu,

z(t) = x(0) +

∫ t

0
e−AτBu(τ) dτ

Solution:

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ) dτ

This expression is known as the Lagrange formula
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Free and Forced Response of the State of the System

The solution to the state-space equation can be expressed as:

Free response of the state of the system:

xfree(t) = eAtx(0)

Depends only on the initial state x(0) and represents the natural dynamics
of the system when u(t) = 0

Forced response of the state of the system::

xforced(t) =

∫ t

0
eA(t−τ)Bu(τ) dτ

Driven by the input u(t) and capturing the external forcing effect
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Free and Forced Response of the Output

The output y(t) is given by y(t) = Cx(t) + Du(t)

Substituting for x(t):

y(t) = CeAtx(0) + C

∫ t

0
eA(t−τ)Bu(τ) dτ + Du(t)

Free response of the output:

yfree(t) = CeAtx(0)

Forced response of the output:

yforced(t) = C

∫ t

0
eA(t−τ)Bu(τ) dτ + Du(t)

Due to linearity, the response leverages the principle of superposition
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Transfer Function and Forced Response

Assuming x0 = 0, the system has only the forced response:

y(t) =

∫ t

0
CeA(t−τ)Bu(τ) dτ + Du(t)

Taking the Laplace transform:

Y (s) =
[
C (sI − A)−1B + D

]︸ ︷︷ ︸
G(s)

U(s)

The transfer function G (s) describes the input-output relationship
under the assumption x0 = 0

For non-zero initial states, the transfer function cannot capture the
complete system behaviour
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Computing the Matrix Exponential

Trajectory computation requires calculating the matrix exponential eAt

Example 1: A =

[
0 1
0 0

]
Compute A2 = 0, so the series terminates:

eAt = I + At =

[
1 t
0 1

]

Example 2: A =

[
0 1
−1 0

]
Recognize the cyclic pattern: A2 = −I , A3 = −A, A4 = I

Result:

eAt =

[
cos(t) sin(t)
− sin(t) cos(t)

]
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Python Example: Plotting Forced Response

impor t c o n t r o l as c t
impor t numpy as np
from ma t p l o t l i b impor t p yp l o t as p l t

A = [[ −1 , −2] , [ 3 , −4]]
B = [ [ 5 ] , [ 7 ] ]
C = [ [ 6 , 8 ] ]
D = [ [ 9 ] ]

t = np . l i n s p a c e ( 0 . 0 , 1 . 5 , 100)
s y s = ct . s s (A, B, C , D)
T, y = ct . f o r c e d r e s p o n s e ( sys , T=t , X0=[1 , 0 ] )

p l t . p l o t (T, y , ’ r ’ )
p l t . show ( )
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