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Introduction to Linear Systems

Standard Equations:

ox = Ax + Bu
y = Cx+ Du

Components:

e x: State (internal variable of the system)
e u: Input (external action applied to the system)

e y: Output (measurable response of the system)
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Continuous vs. Discrete-Time Systems

Continuous-Time Systems:

@ 0 = x (time derivative of x)

Discrete-Time Systems:
e o = xT (state evolves as: x[k + 1] = Ax[k] + Bu[k])
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Internal Properties of Linear Systems

In this module, we will focus on the following properties:

o Internal: Characteristics of matrix A
@ Input-to-State: Dependent on (A, B)
@ State-to-Output: Governed by (A, C)

In this lecture, we will focus on the internal properties of the system
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State Trajectories: Continuous-Time Systems

System Behavior:

e Initial condition: x(0) = xp
e Input: u(t) for t >0

State Evolution:

x(0) = Axg + Bu(0)

@ Velocity at t = 0 represented as a vector in state space
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Trajectories in State Space

Continuous-Time Systems:

@ Smooth curve in state space

Discrete-Time Systems:

@ Sequence of states: x(0), x(1),x(2), ...
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Trajectories

Trajectory:

Trajectory = {x(t) : t > 0}

@ A set of points in state space

e Evolution depends on initial state xp and input u(t)
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Motions

Motion:

The pair (t,x(t)). i.e. the state and the time it is visited

For example

o Trajectory: Train's path from London to Manchester

@ Motion: Train's path with arrival and departure times
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Discrete vs. Continuous Systems

Continuous Systems:

@ Physical systems (e.g., mechanical systems, celestial orbits)

Discrete Systems:
o Digital systems or sampled physical systems

@ Example: Optimization algorithms or clocked circuits
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Special Trajectories and Motions

@ Certain trajectories and motions reveal intrinsic properties of linear
systems

@ In linear systems, these special cases generalize to other trajectories

@ Understanding these trajectories offers deeper insights into system
behaviour
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Equilibrium of Linear Systems

Linear systems share properties across all trajectories

Equilibrium: A specific trajectory where the system state remains
constant

@ Originates from analytical mechanics, where equilibrium refers to a
state of no motion
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Definition of Equilibrium

Given:
e Initial condition: x(0) = xo
e Constant input: u(t) = up
Definition: An equilibrium is a point xg such that:
x(t)=x Vt>0

Graphical Representation:
e Continuous-time: Straight line parallel to the t-axis in (x1, x2, t) space

@ Discrete-time: Discrete points along the same straight line
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Characterizing Equilibrium

Continuous-time system:

x=Ax+ Bu, y=Cx+ Du

Steps:
Q If x(t) is constant, x(t) =0
@ Substituting: 0 = Axp + Buyg
@ Solve: —Axy = Buyg

Solution:
e If Ais invertible: xp = —A~1Buy.
o If det(A) = 0:

» No solution, or
> Infinitely many solutions
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Discrete-Time Systems
Discrete-time system:
x|k 4+ 1] = Ax[k] + Bu[k]
Equilibrium: xp satisfies:
xg = Axg + Bug
Rearranging:

(I — A)xo = Bug

Solution:
o If det(/ — A) #0: xo = (I — A)"1Bug
o If det(/ — A) =0:
» No equilibrium, or
> Infinitely many equilibria
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Continuous-Time vs Discrete-Time Systems

Differences:

o Continuous: Check det(A) and solve Axp + Bup =0
@ Discrete: Check det(/ — A) and solve (I — A)xo = Bup

Therefore

e Eigenvalues at 0 (continuous) or 1 (discrete) are critical

@ These eigenvalues affect steady-state performance and control design
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Example: Continuous-Time System

System:

X|1=Xp, Xpo=—Xp+U

Step 1: Formulate Matrices

Step 2: Check Determinant

det(A) =0 = Ais not invertible
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Example: Solution

Equilibrium Conditions:
0=x, 0=—-x04u

Case 1l: u=0
@ x» = 0, x3 can take any value
e Equilibrium Points: {(x1,0) | x; € R}

Case 2: u#0

@ No equilibrium exists
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Some observations

@ Equilibrium analysis involves solving linear equations

e Eigenvalues at 0 (continuous) or 1 (discrete) are crucial for control
design

@ Unlike linear systems, non-linear systems may exhibit multiple distinct
equilibria
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Computation of Trajectories for Linear Systems

How do we compute trajectories for linear systems with
time-varying inputs?

Given the state equation:
x = Ax + Bu

where x(0) in the initial state and u(t) in the input for all t >0
We want to find x(t) for t > 0

In other words, we want to find all future values of the state
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Case 1: A=0

State equation:

x = Bu

Solution:

x(t) = x(0) + /Ot Bu(r)dt

e Contribution from initial state: x(0)

@ Contribution from input: Integral term
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Case 2: A= « (scalar)

State equation:

Solution:
In @ =
x(0)
x(t) = x(0)e**

at

e Contribution from initial state: x(0)

@ Contribution from the internal properties: A = «
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General Case: Matrix A

State equation:

x = Ax
Define a matrix exponential:
A2t2 A33
=1+ At+ —Egr— + _757_ +...

@ This definition is a tool to solve the general case for matrix A
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Properties of Matrix Exponential

Property 1: Commutativity with A

eMA = At

Property 2: Time derivative
d A At
—e™ = Ae
dt
@ Analogous to scalar exponential properties

Many more properties shown in the module notes
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Solving the Differential Equation

State equation:

x = Ax + Bu, where x(0) = xp

Define:
z(t) = e "tx(t)
Therefore:
z = e "Bu,
z(t) = x(0) + /Ot e " Bu(r) dr
Solution:

t
x(t) = e*x(0) —I—/ A=) Bu(r)dr
0

This expression is known as the Lagrange formula
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Free and Forced Response of the State of the System

The solution to the state-space equation can be expressed as:

Free response of the state of the system:
Xree(t) = €*x(0)

Depends only on the initial state x(0) and represents the natural dynamics
of the system when u(t) =0

Forced response of the state of the system::
t
Xforced(t) = / eA(tiT)BU(T) dr
0

Driven by the input u(t) and capturing the external forcing effect
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Free and Forced Response of the Output
The output y(t) is given by y(t) = Cx(t) + Du(t)

Substituting for x(t):
t
y(t) = Ce™tx(0) + C / A7) By(7) dr + Du(t)
0

Free response of the output:
Yree(t) = Ce™x(0)
Forced response of the output:
t
Vioreed(£) = € / A=) Bu(r) dr + Du(t)
0
Due to linearity, the response leverages the principle of superposition
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Transfer Function and Forced Response
Assuming xp = 0, the system has only the forced response:

t
y(t) = / Ce™*=7) Bu(r) d7 + Du(t)
0
Taking the Laplace transform:

Y(s) = [C(sl — A)"'B + D] U(s)

G(s)

@ The transfer function G(s) describes the input-output relationship
under the assumption xg = 0

@ For non-zero initial states, the transfer function cannot capture the
complete system behaviour
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Computing the Matrix Exponential

Trajectory computation requires calculating the matrix exponential et

0 1
Example 1: A= [O O}

e Compute A2 = 0, so the series terminates:

1 ¢t
At _ _

e —/+At—[0 1]
-1 0

@ Recognize the cyclic pattern: A2 = —/, A3 = —A A* =1
@ Result:

Example 2: A = [ 0 1]

—sin(t) cos(t)

At = [ cos(t) sin(t)]
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Python Example: Plotting Forced Response

import control as ct
import numpy as np
from matplotlib import pyplot as plt

= [[-1, =2], [3, —4]]
= [[5]. [7]]

[[6, 8]]

= [[91]

t = np.linspace (0.0, 1.5, 100)
sys = ct.ss(A, B, C, D)
T, y = ct.forced_response(sys, T=t, X0=[1, 0])

OnNnw>

plt.plot(T, y, 'r")
plt.show ()
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