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Examples of Systems: Growth of a Family of Rabbits

What is a system?

They are everywhere... for example...

The number of pairs of rabbits n months after a single pair begins
breeding (and newly born bunnies are assumed to begin breeding when
they are two months old) is given by the so-called Fibonacci numbers,
which are recursively defined as

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.
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Examples of Systems: Fibonacci Numbers

Interestingly, there are many applications of Fibonacci numbers:

The Fibonacci number Fn+1 gives the number of ways for 2× 1
dominoes to cover a 2× n checkerboard;

The Fibonacci number Fn+2 gives the number of ways of picking a set
(including the empty set) from the numbers 1, 2, ... n, without
picking two consecutive numbers;

The probability of not getting two heads in a row in n tosses of a coin
is Fn+2

2n .

Given a resistor network of 1Ω resistors, each incrementally connected
in series or parallel to the preceding resistors, the net resistance is a
rational number having the maximum possible denominator equal to
Fn+1.

One mathematical model can represent multiple real-world
phenomena
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Examples of Systems: Model of an Infectious Disease

There are several models which describe the interactions between HIV and
immunocytes in the human body. The most common model is

ẋ = λ− dx − ηβxy , ẏ = ηβxy − ay − yI .

x and y : Population of uninfected and infected CD4 T-helper cells

I : Immune system action

λ, d , β, η and a are positive parameters

Three operating conditions exist:

Healthy patient.

HIV infection without AIDS.

AIDS-dominated state.

The first two operating conditions are unstable, which highlights why
treating HIV patients is very challenging.
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Examples of Systems: Scholastic Population (Graduation)

System Description:

x1(k + 1) = (1− α1(k))x1(k) + u(k),

x2(k + 1) = (1− α2(k))x2(k) + α1(k)x1(k),

x3(k + 1) = (1− α3(k))x3(k) + α2(k)x2(k),

y(k) = α3(k)x3(k).

u(k) be the number of incoming first-year students at time k

y(k) be the number of graduated students at time k

xi (k) be the number of students in the i-th year at time k

αi (k) ∈ [0, 1] be the rate of promotion in the i-th year at time k

Special Cases:

Ideal case: αi (k) = 1,∀k =⇒ y(k) = u(k − 3).

Extreme case: αi (k) = 0,∀k and some i =⇒ limk→∞ y(k) = 0.
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Examples of Systems: ABS System (Part 1)

Electronic Anti-lock Braking Systems (ABS) maximize friction while
maintaining steerability. To model the braking system, the quarter-car
model is used

Jω̇ = rFx − Tb, mv̇ = −Fx

ω: Angular speed of the wheel.

v : Longitudinal speed of the vehicle.

Tb: Braking torque.

Fx : Longitudinal tire-road contact force.
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Examples of Systems: ABS System (Part 2)

The dynamic behaviour is hidden in the expression of Fx , which depends
on the variables v and ω, and can be approximated as follows

Fx = Fzµ(λ, βt , θr )

Fz is the vertical force at the tire-road contact point

λ is the longitudinal slip, defined as λ = v−ωr
max{ωr ,v}

βt is the wheel side-slip angle

θr is a set of parameters which characterize the shape of the static
function µ(λ, βt ; θr ) and which depend upon the road conditions
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Examples of Systems: Google PageRank Algorithm

Represent the web as a graph with nodes (web pages) and links
(hyperlinks) to determine the importance of web pages for search engine
results.

Ranking Equation:

xi (k + 1) = (1− p)
∑
j :j→i

xj(k)

nj
+ p

N∑
j=1

xj(k)

N
.

Matrix Form:
x(k + 1) = Ax(k).

Properties:

Convergence to a steady-state vector x̄ .

x̄ is the normalized Google PageRank vector.
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Classical Control Methods

Classical control methods: Frequency domain (1940s-1950s)

Systems represented by transfer functions

Performance and robustness specifications were either cast directly in
or translated into the frequency domain

Analysis techniques involving root locus plots, Bode plots, Nyquist
plots, etc.

Covered in ECS601U/ECS788P Control Systems
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Modern State-space Methods

Modern state-space methods: Time domain (1960s-1970s)

Systems represented in the time domain by a type of differential
equation called a state equation

Performance and robustness specifications also were specified in the
time domain

Analysis focuses on linear algebra techniques

Covered in this module ECS654U/ECS778P Advanced Control
Systems
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Advantages of State-Space Modelling

Why use a state-space representation?

Some advantages:

More suitable for multiple-input, multiple-output (MIMO) systems,
like spacecraft, aircraft, automobiles, marine vessels, etc

Classical control methods apply to linear (or linearised) systems only

Computation: computers were better with numbers than with
symbolic computation.
In state-space methods, linear algebra techniques (like rank of a
matrix, invariant subspaces, null-space, kernels, etc.) are found to
describe various properties of control systems (like controllability,
observability, feedback stabilizability, etc.)
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State-Space Representation

General Form:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Components:

x(t): State vector (n × 1).

u(t): Input vector (p × 1).

y(t): Output vector (q × 1).

A,B,C ,D: System matrices.
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State-Equation Block Diagram

The main motivation for state-space modelling is to convert a coupled
system of higher-order ordinary differential equations to a coupled set of
first-order differential equations.
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Linear Time-Invariant (LTI) Systems

In this module, we will focus on LTI systems,

Key Properties:

Linearity: Superposition and scaling principles apply.

Time-Invariance: System dynamics do not change over time.

Examples of Applications:

Control systems in robotics and aerospace.

Signal processing systems.

Electrical circuits and mechanical systems.
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Example: Mass-Spring-Damper System (Part 1)

Translational mechanical system

Free-body diagram
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Example: Mass-Spring-Damper System (Part 2)

Using Newton’s second law, the dynamic force balance for the free-body
diagram yields the following second-order ordinary differential equation

mÿ(t) + cẏ(t) + ky(t) = f (t)

Define the state variables as displacement and velocity

x1(t) = y(t)

x2(t) = ẏ(t) = ẋ1(t)

Therefore

ẏ(t) = x2(t)

ÿ(t) = ẋ2(t)
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Example: Mass-Spring-Damper System (Part 3)

Substituting these two state definitions into the original system equation
gives

mẋ2(t) + cx2(t) + kx1(t) = f (t)

The original single second-order differential equation can be written as a
coupled system of two first-order differential equations

ẋ1(t) = x2(t)

ẋ2(t) = − c

m
x2(t)−

k

m
x1(t) +

1

m
f (t)

Aidan O. T. Hogg (QMUL) Advanced Control Systems Spring 2025 17 / 23



Example: Mass-Spring-Damper System (Part 4)

Recall state-space equations

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

State-space representation of the system

ẋ(t) =

[
0 1

− k
m − c

m

]
x(t) +

[
0
1
m

]
f (t)

y(t) =
[
1 0

]
x(t)
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Example: Parallel RLC Circuit (Part 1)

Parallel electrical circuit

The input to the system is the current produced by the independent
current source u(t) = i(t), and the output is the capacitor voltage
y(t) = v(t).

It is often convenient to associate state variables with the energy
storage elements in the network, namely, the capacitors and
inductors.
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Example: Parallel RLC Circuit (Part 2)

Specifically, capacitor voltages and inductor current and, therefore, we
choose state variables

x1(t) = iL(t)

x2(t) = v(t)

Using the inductor’s voltage-current relationship given by

x2(t) = v(t) = L
diL(t)

dt
= Lẋ1(t)

While applying Kirchhoff’s current law produces (recall ic(t) = C v(t)
dt )

1

R
x2(t) + x1(t) + Cẋ2(t) = u(t)
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Example: Parallel RLC Circuit (Part 3)

These relationships can be rearranged so as to isolate state-variable time
derivatives as follows

ẋ1(t) =
1

L
x2(t)

ẋ2(t) = − 1

C
x1(t)−

1

RC
x2(t) +

1

C
u(t)

This pair of coupled first-order differential equations, along with the
output definition y(t) = x2(t), yields the following state-space description
for this electrical circuit

ẋ(t) =

[
0 1

L
− 1

C − 1
RC

]
x(t) +

[
0
1
C

]
u(t)

y(t) =
[
1 0

]
x(t) + [0]u(t)
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Example: Parallel RLC Circuit (Part 4)

Buy inspection, the coefficient matrices A, B, C, and D are found to be

A =

[
0 1

L
− 1

C − 1
RC

]
, B =

[
0
1
C

]
, C =

[
1 0

]
, D = [0]

Note that D = 0 in this example because there is no direct coupling
between the current source and the capacitor voltage.
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Python Library for State-Space Analysis
Install the Python Control Systems library using

p ip i n s t a l l c o n t r o l

Documentation:
https://web.math.princeton.edu/~cwrowley/python-control

Example:

impor t c o n t r o l as c t
from ma t p l o t l i b impor t p yp l o t as p l t
A = [[ −1 , −2] , [ 3 , −4]]
B = [ [ 5 ] , [ 7 ] ]
C = [ [ 6 , 8 ] ]
D = [ [ 9 ] ]
s y s = ct . s s (A, B, C , D)
c t . s t e p r e s p o n s e ( s y s ) . p l o t ( )
p l t . show ( )

Aidan O. T. Hogg (QMUL) Advanced Control Systems Spring 2025 23 / 23

https://web.math.princeton.edu/~cwrowley/python-control

