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Examples of Systems: Growth of a Family of Rabbits

What is a system?
They are everywhere... for example...

The number of pairs of rabbits n months after a single pair begins
breeding (and newly born bunnies are assumed to begin breeding when
they are two months old) is given by the so-called Fibonacci numbers,
which are recursively defined as

FOZO; F1:17 Fn: n—1+Fn—2-
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Examples of Systems: Fibonacci Numbers

Interestingly, there are many applications of Fibonacci numbers:

The Fibonacci number F, 1 gives the number of ways for 2 x 1
dominoes to cover a 2 X n checkerboard;

The Fibonacci number F, 15 gives the number of ways of picking a set
(including the empty set) from the numbers 1, 2, ... n, without
picking two consecutive numbers;

The probability of not getting two heads in a row in n tosses of a coin
H Fn+2

is 552

Given a resistor network of 1£2 resistors, each incrementally connected
in series or parallel to the preceding resistors, the net resistance is a
rational number having the maximum possible denominator equal to

Frt1.

One mathematical model can represent multiple real-world
phenomena
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Examples of Systems: Model of an Infectious Disease

There are several models which describe the interactions between HIV and
immunocytes in the human body. The most common model is

x=A—dx—nBxy, y=nBxy—ay—yl
@ x and y: Population of uninfected and infected CD4 T-helper cells

@ /: Immune system action

@ A\, d, 8, nand a are positive parameters

Three operating conditions exist:
@ Healthy patient.
e HIV infection without AIDS.
o AIDS-dominated state.

The first two operating conditions are unstable, which highlights why
treating HIV patients is very challenging.
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Examples of Systems: Scholastic Population (Graduation)

System Description:

xa(k+1) = (1 ar(k))x(k) + u(k),

xa(k+ 1) = (1 — aa(k))xa(k) + a1 (k) (k),

x3(k+1) = (1 — as(k))xs(k) + az(k)x2(k),
y(k) = as(k)xs(k).

@ u(k) be the number of incoming first-year students at time k

o y(k) be the number of graduated students at time k

@ x;(k) be the number of students in the i-th year at time k

e «aj(k) € [0,1] be the rate of promotion in the i-th year at time k

Special Cases:
o ldeal case: «;(k) =1,Vk = y(k) = u(k —3).
e Extreme case: aj(k) = 0,Vk and some i = limy_ y(k) =0.
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Examples of Systems: ABS System (Part 1)

Electronic Anti-lock Braking Systems (ABS) maximize friction while

maintaining steerability. To model the braking system, the quarter-car
model is used

Jw=rFi— Ty, mv=—F

@ w: Angular speed of the wheel.
@ v: Longitudinal speed of the vehicle.
@ Tp,: Braking torque.

o F,: Longitudinal tire-road contact force.
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Examples of Systems: ABS System (Part 2)

The dynamic behaviour is hidden in the expression of F,, which depends
on the variables v and w, and can be approximated as follows

Fx = z#(Aa /Bta 9r)

@ F, is the vertical force at the tire-road contact point

v—wr
max{wr,v}

@ A is the longitudinal slip, defined as A =
@ [; is the wheel side-slip angle

@ 0, is a set of parameters which characterize the shape of the static
function p(A, B; 0,) and which depend upon the road conditions
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Examples of Systems: Google PageRank Algorithm

Represent the web as a graph with nodes (web pages) and links
(hyperlinks) to determine the importance of web pages for search engine
results.

Ranking Equation:

_ xj(k) %j(k)
Jy—i j=1
Matrix Form:
x(k + 1) = Ax(k).

Properties:

@ Convergence to a steady-state vector X.

@ X is the normalized Google PageRank vector.
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Classical Control Methods

Classical control methods: Frequency domain (1940s-1950s)
@ Systems represented by transfer functions

@ Performance and robustness specifications were either cast directly in
or translated into the frequency domain

@ Analysis techniques involving root locus plots, Bode plots, Nyquist
plots, etc.

e Covered in ECS601U/ECS788P Control Systems
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Modern State-space Methods

Modern state-space methods: Time domain (1960s-1970s)

@ Systems represented in the time domain by a type of differential
equation called a state equation

@ Performance and robustness specifications also were specified in the
time domain

@ Analysis focuses on linear algebra techniques

@ Covered in this module ECS654U/ECS778P Advanced Control
Systems
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Advantages of State-Space Modelling
Why use a state-space representation?

Some advantages:

@ More suitable for multiple-input, multiple-output (MIMO) systems,
like spacecraft, aircraft, automobiles, marine vessels, etc

o Classical control methods apply to linear (or linearised) systems only

o Computation: computers were better with numbers than with
symbolic computation.
In state-space methods, linear algebra techniques (like rank of a
matrix, invariant subspaces, null-space, kernels, etc.) are found to
describe various properties of control systems (like controllability,
observability, feedback stabilizability, etc.)
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State-Space Representation

General Form:
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
Components:

@ x(t): State vector (n x 1).
@ u(t): Input vector (p x 1).
@ y(t): Output vector (g x 1).
e A, B, C,D: System matrices.
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State-Equation Block Diagram

u(t) x(?) + A y®

The main motivation for state-space modelling is to convert a coupled
system of higher-order ordinary differential equations to a coupled set of
first-order differential equations.
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Linear Time-Invariant (LTI) Systems

In this module, we will focus on LTI systems,

Key Properties:

@ Linearity: Superposition and scaling principles apply.

@ Time-Invariance: System dynamics do not change over time.
Examples of Applications:

@ Control systems in robotics and aerospace.

@ Signal processing systems.

o Electrical circuits and mechanical systems.

Aidan O. T. Hogg (QMUL) Advanced Control Systems Spring 2025 14 /23



Example: Mass-Spring-Damper System (Part 1)

}—» y(®

m ——— ﬂt)

[ESIR

Translational mechanical system

ky(f) —=—j
m —= f

cy(t) —-—

Free-body diagram
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Example: Mass-Spring-Damper System (Part 2)

Using Newton's second law, the dynamic force balance for the free-body

diagram yields the following second-order ordinary differential equation

my(t) + cy(t) + ky(t) = f(¢)

Define the state variables as displacement and velocity

Therefore
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Example: Mass-Spring-Damper System (Part 3)

Substituting these two state definitions into the original system equation
gives

mio(t) + cxo(t) + kxi(t) = f(t)

The original single second-order differential equation can be written as a
coupled system of two first-order differential equations

)-(1(1') = Xg(t)

() =~ Sxalt) ~ () + (1)
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Example: Mass-Spring-Damper System (Part 4)

Recall state-space equations

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

State-space representation of the system

=% L |xo+ |3

m m

y(t) =1 0] x(t)
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Example: Parallel RLC Circuit (Part 1)

ir(®)
l C—— v

i(?) R L % JE—

—_ T

Parallel electrical circuit

The input to the system is the current produced by the independent
current source u(t) = i(t), and the output is the capacitor voltage

y(t) = v(t).
It is often convenient to associate state variables with the energy

storage elements in the network, namely, the capacitors and
inductors.
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Example: Parallel RLC Circuit (Part 2)

Specifically, capacitor voltages and inductor current and, therefore, we
choose state variables

Xl(t) = iL(t)

X2(t) = V(t)
Using the inductor’s voltage-current relationship given by
so(t) = v(t) = Ldlg—gt) ~ Lia(t)

While applying Kirchhoff's current law produces (recall ic(t) = CV(S?)

a(t) +xa(t) + Cio(t) = u(t)
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Example: Parallel RLC Circuit (Part 3)

These relationships can be rearranged so as to isolate state-variable time
derivatives as follows

fa(t) = %Xz(t)

—Za(t) — pelt) +gul(t)

5(2(1') = c

This pair of coupled first-order differential equations, along with the
output definition y(t) = xa(t), yields the following state-space description
for this electrical circuit

0

=

x(t) = [ _RIC] x(t) + [g] u(t)

y(t)=[1 0] x(t)+ [0]u(t)

Al
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Example: Parallel RLC Circuit (Part 4)

Buy inspection, the coefficient matrices A, B, C, and D are found to be

Note that D = 0 in this example because there is no direct coupling
between the current source and the capacitor voltage.

Aidan O. T. Hogg (QMUL) Advanced Control Systems Spring 2025 22/23



Python Library for State-Space Analysis
Install the Python Control Systems library using

pip install control

Documentation:

https://web.math.princeton.edu/~cwrowley/python-control

Example:

import control as ct

from matplotlib import pyplot as plt
A=[[-1, =2], [3, —4]]

B = [[5]. [7]]
C=[[6, 8]]
D

s

[[9]]

ys = ct.ss(A, B, C, D)
ct.step_-response(sys).plot()
plt.show ()
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