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Preface

These notes were originally created by Prof. Alessandro Astolfi as a reference for a third-year ‘Control

Engineering’ module in the Electrical and Electronic Engineering (EEE) Department at Imperial

College London and as supplementary material for the ‘Automatic Control’ module at the University

of Rome Tor Vergata. Subsequently, these notes have now been revised by Dr Aidan O. T. Hogg for

the 3rd/4th-year ‘Advanced Control Systems’ module in the Electrical Engineering and Computer

Science (EECS) Department at Queen Mary University of London.

The primary aim of these notes is to provide a self-contained, rigorous foundation in systems theory,

along with an introduction to state-space analysis and design methods for linear systems. The content

draws heavily from the Teoria dei sistemi by A. Ruberti and A. Isidori (Boringheri, 1985) and Prof.

Astolfi’s research in nonlinear control theory. While various approaches to the subject exist, the

so-called behavioural approach, developed by J. Willems, is probably the most compelling alternative.

It is hoped that these notes will serve as a valuable starting point for further exploration into

more advanced topics in systems and control theory. Although there are numerous excellent

textbooks—such as A Linear Systems Primer by Panos J. Antsaklis and Anthony N. Michel—that

cover similar material in depth, these notes intend to offer a concise yet precise introduction rather

than to replace a more comprehensive study.

AIDAN O. T. HOGG



6 INTRODUCTION

1 Introduction

In the (abstract) definition of the system, we follow a simple and natural approach, the so-called

input-output approach, which is motivated by the study of simple systems. Among the various

mathematical representations, we give particular emphasis to the one based on the introduction

of an auxiliary variable, the state variable, which is denoted as state space representation. This

representation plays a fundamental role in systems and control theory; hence, we discuss its properties

and the conditions under which it can be introduced in detail.

1.1 Examples

Let’s start by considering a few motivating examples that are instrumental in introducing the notion

of an (abstract) system.

1.1.1 Growth of a family of rabbits

The number of pairs of rabbits n months after a single pair begins breeding (and newly born bunnies

are assumed to begin breeding when they are two months old) is given by the so-called Fibonacci

numbers, which are recursively defined as

F0 = 0 , F1 = 1 , Fn = Fn−1 + Fn−2 . (1.1)

Interestingly

• the Fibonacci number Fn+1 gives the number of ways for 2 × 1 dominoes to cover a 2 × n

checkerboard;

• the Fibonacci number Fn+2 gives the number of ways of picking a set (including the empty set)

from the numbers 1, 2, ... n, without picking two consecutive numbers;

• the probability of not getting two heads in a row in n tosses of a coin is Fn+2

2n .

Finally, given a resistor network of 1Ω resistors, each incrementally connected in series or parallel

to the preceding resistors, the net resistance is a rational number having the maximum possible

denominator equal to Fn+1.

This example shows that the same mathematical object models several physical situations or

properties. This justifies, therefore, the study of the feature of the abstract object (1.1) without

reference to the real situation it represents.

1.1.2 Model of an infectious disease

There are several mathematical models which describe the interactions between HIV and immunocytes

in the human body. The most commonly used model for long-term excitement of the immune response,
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INTRODUCTION 7

and hence, for medication purposes, is described by the equations

ẋ = λ− dx− ηβxy , ẏ = ηβxy − ay − yI , (1.2)

where x denotes the population of uninfected CD4 T-helper cell (in a unit volume of blood), y denotes

the population of infected CD4 T-helper cell (in a unit volume of blood), I denotes the action of the

immune system, and λ, d, β, η and a are positive parameters.

The population of healthy (uninfected) CD4 T-helper cells (produced by thymus) increases at a rate

λ, and decreases at a rate dx (since a cell dies naturally). The healthy CD4 T-helper cells are a target

of HIV, hence its population decreases proportionally to x and y, because infected CD4 T-helper cells

produce the virus, i.e. when a cell is infected, it generates a new virus. The infected cells die out at

a rate ay, increase at a rate proportional to x and y and are affected by the immune system.

In general, and without any medication, the model (1.2) has three main operating conditions. One

which corresponds to a healthy patient, one which represents a patient with HIV but not with AIDS,

and one which represents a patient in which AIDS dominates. It can be (rigorously) shown that

the first two operating conditions are unstable, whereas the third one is stable (formal definitions

of stability and instability will be given in Chapter 2). This justifies the difficulty in treating

HIV-infected patients.

1.1.3 A scholastic population

Consider a three-year course and the problem of modelling the number of students in each year. Let

• u(k) be the number of incoming first-year students at time k

• y(k) be the number of graduated students at time k

• xi(k) be the number of students in the i-th year at time k

• αi(k) ∈ [0, 1] be the rate of promotion in the i-th year at time k

The behaviour of the students’ population can be described by the equations

x1(k + 1) = (1− α1(k))x1(k) + u(k) ,

x2(k + 1) = (1− α2(k))x2(k) + α1(k)x1(k) ,

x3(k + 1) = (1− α3(k))x3(k) + α2(k)x2(k) ,

y(k) = α3(k)x3(k) .

(1.3)

In the ideal situation in which αi(k) = 1 for all k we have that

y(k) = u(k − 3) ,
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8 INTRODUCTION

which clearly shows that all incoming students graduate after three years. Finally, in the extreme

situation in which, αi(k) = 0 for all k and for some i, we have

lim
k→∞

y(k) = 0 .

1.1.4 A tractor-trailer system

Consider a vehicle (see Figure 1.1) consisting of a wheeled tractor with two rear-drive wheels and

a front-steering wheel, towing a trailer, possibly with off-axle hitching. The off-axle length c has to

be regarded as a variable with the sign, being negative when the joint is in front of the wheel axle

and positive otherwise. L1 and L2 are constants depending on the geometry of the vehicle. The

longitudinal speed v1 and the steering angle δ of the tractor can be (independently) manipulated so

that the guide-point P1 follows a desired path with an assigned velocity.

Suppose that the vehicle has to follow, at a given speed, a circular path of radius R1.

P1

P2

H

Jo  s

Jp

J

lo  s P0

d

L1

L2

c

v1

j

Figure 1.1: Vehicle’s geometry and path-tracking offsets los and ϑos.

To describe the motion of the vehicle, define los and ϑos as the tractor lateral offset and its orientation

offset, respectively. They are measured with reference to the projection of the point P1 of the tractor

onto the path. Moreover, let φos = φ − φp be the difference between the current angle φ between

tractor and trailer and its steady state value φp along the prescribed path. Path-tracking can be

viewed as the task of driving these offsets asymptotically to zero.
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The offsets are such that

l̇os = −σ |v1| sinϑos ,

ϑ̇os = v1
u

L1
− σ |v1|

cosϑos
R1 + los

,

φ̇os = − v1
L2

sin (φos + φp)−
v1

L1L2
(c cos (φos + φp) + L2)u ,

where u = tan δ is the manipulated variable, and the parameter σ is used to distinguish between

counter clockwise (σ = 1) or clockwise (σ = −1) directions.

In many applications, the absolute value of the steering angle δ is bounded by a saturation value

δM < π/2.

1.1.5 A simplified atmospheric model

Consider a rectangular slice of air heated from below and cooled from above by edges kept at constant

temperatures. This is our atmosphere in its simplest description. The bottom is heated by the earth,

and the void of outer space cools the top. Within this slice, warm air rises and cool air sinks. In the

model, as in the atmosphere, convection cells develop, transferring heat from bottom to top.

The state of the atmosphere in this model can be completely described by three variables, namely the

convective flow x, the horizontal temperature distribution y, and the vertical temperature distribution

z; by three parameters, namely the ratio of viscosity to thermal conductivity σ, the temperature

difference between the top and bottom of the slice ρ, and the width-to-height ratio of the slice β, and

by three differential equations describing the appropriate laws of fluid dynamics, namely

ẋ = σ(y − x) , ẏ = ρx− y − xz , ż = xy − βz . (1.4)

These equations were introduced by E. N. Lorenz in 1963 to model the strange atmosphere behaviour

and to justify why weather forecasts can be erroneous and have been recently shown to play an

important role in models of lasers and electrical generators. Note that the Lorenz equations are still

at the basis of modern weather forecast algorithms.

1.1.6 A perspective vision system

A classical problem in machine vision is to determine the position of an object moving in the

three-dimensional space by observing the motion of its projected feature on the two-dimensional

image space of a charge-coupled device camera. In this case, the problem of determining the object

space coordinates reduces to the problem of estimating the depth (or range) of the object.

The motion of an object undergoing rotation, translation and linear deformation can be described by

the equation  ẋ1

ẋ2

ẋ3

 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


 x1

x2

x3

+

 b1

b2

b3

 , (1.5)
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x1
x3

y1

x2

y2

Figure 1.2: Diagram of the perspective vision system.

where (x1, x2, x3) ∈ IR3 are the coordinates of the object in an inertial reference frame, with x3 being

perpendicular to the camera image space, as shown in Figure 1.2. The parameters aij , bi, known as

motion parameters, are time-varying and known.

Using the perspective (or “pinhole”) model for the camera, the measurable coordinates on the image

space are given by

y =
î
y1, y2

ó′
= ϵ

[ x1
x3
,

x2
x3

]′
, (1.6)

where ϵ is the focal length of the camera, i.e. the distance between the camera and the origin of the

image-space axes.

The perspective estimation problem consists of reconstructing the coordinates x1, x2, x3 from

measurements of the image-space coordinates y1, y2.

1.1.7 The ABS system

Electronic Anti-lock Braking Systems (ABS) have recently become a standard for all modern cars.

ABS can greatly improve the safety of a vehicle in extreme circumstances, as it maximizes the

longitudinal tire-road friction while keeping large lateral forces, which guarantee vehicle steerability.

For the preliminary modelling of braking systems, the so-called quarter-car model is used (see Figure

1.3). The model is described by

Jω̇ = rFx − Tb , mv̇ = −Fx , (1.7)

where

• ω is the angular speed of the wheel

• v is the longitudinal speed of the vehicle body
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Figure 1.3: Quarter car vehicle model.

• Tb is the braking torque

• Fx is the longitudinal tire-road contact force;

• J , m and r are the moment of inertia of the wheel, the quarter-car mass, and the wheel radius,

respectively

The dynamic behaviour is hidden in the expression of Fx, which depends on the variables v and ω,

and can be approximated as follows

Fx = Fzµ(λ, βt, θr) ,

where

• Fz is the vertical force at the tire-road contact point;

• λ is the longitudinal slip, defined as1

λ =
v − ωr

max{ωr, v}

• βt is the wheel side-slip angle

• θr is a set of parameters which characterize the shape of the static function µ(λ, βt; θr) and

which depend upon the road conditions

1.1.8 A simplified guitar string

Consider a guitar string and assume that it can be modelled by n identical segments (linear lumped

springs of unity mass), which interact by means of elastic forces (depending on a tension parameter

k). Let xi, ẋi, and ẍi be the position, velocity, and acceleration, respectively, of the i-th segment.

1By definition, λ ∈ [−1, 1]; during braking, though, as ωr ≤ v, the wheel slip is defined as λ = v−ωr
v

and λ ∈ [0, 1].
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The string can be described by

ẍ1 = −k(x1 − x2) ,

ẍ2 = −k(x2 − x1)− k(x2 − x3) ,
...

ẍi = −k(xi − xi−1)− k(xi − xi+1) ,
...

ẍn = −k(xn − xn−1) .

(1.8)

This can be rewritten in compact form as

ẍ =



−k k 0 0 . . . 0

k −2k k 0 . . . 0

0 k −2k k . . . 0
...

...
...

. . .
...

...

0 . . . 0 k −2k k

0 . . . 0 0 k −k


x = Ax ,

where x = [x1, x2, . . . , xn]
′. The main frequency of oscillation of the string, hence the tune of the

string, is a function of the square root of the largest nonzero eigenvalue of A, and this depends on k,

hence on the tension on the string.

Remark. A more precise model of a guitar string of length L is given by the so-called one-dimensional

wave equation
∂2x(y, t)

∂y2
=
ρ

T

∂2x(y, t)

∂t2
, (1.9)

where y ∈ [0, L] denotes the position of a point on the string, x(y, t) the deformation of the point y

at time t with respect to the rest position, ρ the mass per unit of length, and T the tension of the

string. From this equation, it is possible to obtain the given approximate model by considering the

finite difference approximation of the derivative, namely

∂2x(y, t)

∂y2
≈ x(y + h, t)− 2x(y, t) + x(y − h, t)

h2
,

defining the variables

x1 = x(0, t) x2 = x(h, t) · · · xn = x(L, t) ,

and using the constraints

x(L+ h)− x(L) = 0 x(0)− x(−h) = 0 .

Note, finally, that the wave equation admits a close solution is given by

x(y, t) = A sinωnt sin
nπy

L
,

where

ω2
n =

n2π2

L2

T

ρ
.
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⋄

1.1.9 Approximate discrete-time models

Consider the differential equation

ẋ = f(x) , (1.10)

with x ∈ IRn, together with the initial condition x(0) = x0, for some given x0, and the problem

of obtaining a solution x(t), for t ≥ 0, of such equation. Except for very specific examples, it is,

in general, not possible to compute a closed-form solution x(t). This implies that x(t) has to be

computed numerically, i.e. the idea is to select a sequence of time instants 0 < t1 < t2 · · · and to

construct a numerical algorithm yielding values x1, x2, · · · which approximate x(t1), x(t2), · · · . To
this end, the simplest possible approach is to consider an equally spaced sequence of time instants,

namely

{0, τ, 2τ, · · · , kτ, · · · } ,

where τ > 0 is the so-called sampling time, and approximate the time derivative with the first

difference, namely

ẋ(kτ) ≈ x(kτ + τ)− x(kτ)

τ
.

The differential equation can thus be approximated by

x(kτ + τ)− x(kτ)

τ
= f(x(kτ)) ,

yielding the integration algorithm

xk+1 = xk + τf(xk) , (1.11)

with k ≥ 0, and with x0 given. The equation (1.11) is known as the Euler discrete-time approximation

of the differential equation (1.10). The sequence {xk} obtained from the Euler approximate model is

such that

∥xk − x(kτ)∥ ≤ τψ(k) ,

where ψ(k) is a function of k which is not, in general, bounded. This implies that the use of the Euler

approximation yields an error that can be reduced (under certain technical conditions), reducing the

sampling interval τ but may become unbounded as k → ∞, i.e. the Euler approximate model cannot

be used for long-term prediction of the solution of differential equations.

1.1.10 Google page rank

The speed and success of Google can be largely attributed to the efficiency of the search algorithm,

which, when linked with a good hardware architecture, creates an excellent search engine.

The main part of the search engine is PageRankTM , a system for ranking web pages developed by

Google’s founders Larry Page and Sergey Brin at Stanford University.

The main idea of the algorithm is the following. The web can be represented as an oriented (and

sparse) graph in which the nodes are the web pages and the oriented paths between nodes are the

AIDAN O. T. HOGG



14 INTRODUCTION

hyperlinks. The basic idea of PageRank is to walk randomly on the graph, assigning to each node a

vote proportional to the frequency of return to the node. If xi(k) denotes the vote of the node i at

time k, one has

xi(k + 1) =
∑
j:j→i

xj(k)

nj
,

where nj is the number of nodes connected to the node j, for i = 1, . . . , N , where N ≈ 3.000.000.000.

The graph, representing the web, is not strongly connected, therefore, to improve the algorithm for

computing the vote, one considers a random jump, with probability p (typically 0.15) to another node

(i.e. another page). As a result

xi(k + 1) = (1− p)
∑
j:j→i

xj(k)

nj
+ p

N∑
j=1

xj(k)

N
. (1.12)

Collecting the variables xi in a vector x we can rewrite the equations for the votes in the form

x(k + 1) = Ax(k) ,

for some matrix A ∈ IRN×N . It is not difficult to prove that the matrix A has one eigenvalue equal

to one and all other eigenvalues λi are such that |λi| < 1. This implies that (we will discuss this issue

in detail, after introducing the notion of stability in Chapter 2)

lim
k→∞

x(k) = x̄ ,

where all elements x̄i of x̄ are non-negative and bounded. The vector x̄ (after a certain normalization)

is Google Page Rank. The computation of x̄ is numerically very difficult, and it is performed once a

month.

1.2 The notion of system

The discussion in Section 1.1 highlights the fact that it is possible to describe the behaviour of

several objects, natural or artificial, by means of mathematical expressions (differential or difference

equations) of diverse forms and with diverse properties.

The notion of a system is thus introduced to provide tools to study such a wide variety of objects

based on their mathematical, hence abstract, description. Therefore, by definition, an abstract system

is an entity which does not depend upon the physical properties of the associated object. This implies

that it is possible to associate the same system with several different objects, and at the same time,

several systems can be associated with the same object (depending upon the properties that have to

be investigated).

We stress that the definition of an abstract notion of a system has the advantage that it allows for

interpretation and study within a unified framework, diverse phenomena and processes, and provides

a unique language for several different areas of applications. However, because of its generality, it

raises several difficult issues, which can be solved or addressed from several perspectives.

In these notes, we define a system by considering the input and output signals. With this in mind,
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note that the simplest way of associating a system to an object is to consider all possible behaviours

(as a function of time) of the input signals and the corresponding output signals. This approach does

not depend upon the physical properties of the signals and upon the mechanisms which determine

such signals.

Remark. Throughout these notes, we assume that the objects under study are deterministic. Similar

considerations can be performed in a probabilistic setting. These, however, require somewhat more

sophisticated mathematical tools. ⋄

The process of association of a system to an object can be regarded as the collection of data from

experiments performed on the object thought of as a black box. The experiments can be carried

out as follows: fix an initial time instant t0, consider a possible input signal for all t ≥ t0 and

the corresponding output signals. This way, we collect one or more pairs of functions, denoted as

input-output pairs, defined for all t ≥ t0. When we collect all such pairs together, we have a set of

input-output pairs, which is used to define a system.

In particular, if we consider the set U of all input signals and the set Y of all output signals, we have

that all input-output pairs determine a relation S which is such that

S ⊂ U × Y .

This implies that the natural way of giving a formal definition of a system is to define an abstract

system as a set of relations where each relation describes all input-output pairs obtained from

experiments performed starting from a given time instant.

In particular, consider an ordered subset T of the set IR, which is the set of time instants of interest

for the system, and define the subset of future time instants2

F (t0) = {t ∈ T | t ≥ t0} ,

the set UF (t0) of all input functions defined for t ≥ t0, and the set Y F (t0) of all output functions

defined for t ≥ t0. Then, a relation

St0 ⊂ UF (t0) × Y F (t0) ,

can be used to describe all experiments, hence all input-output pairs, starting at t0.

From the above discussion, we conclude that an abstract system can be defined as the set of all

relations St0 for all t0 ∈ T . Note, however, that the sets St0 and St1 , for t1 > t0 are not independent

because we can consider some of the pairs in St1 as obtained from experiments started at t0 and

disregarding all data for t < t1. A formal definition of a system must, therefore, consider this issue.

Definition 1.1. Consider an ordered subset T of IR and two (non-empty) sets U and Y . An abstract

2F stands for “future”.
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system is a set of relations

S = {St0 ⊂ UF (t0) × Y F (t0) | t0 ∈ T} ,

such that3 for all t0 ∈ T and for all t1 ∈ F (t0)

(u0, y0) ∈ St0 ⇒ (u0|F (t1), y0|F (t1)) ∈ St1 . (1.13)

For this system, T is the set of time instants, U is the set of values of the input signal, and Y is the

set of values of the output signal.

Condition (1.13) implies that the relation St1 contains all input-output pairs which are obtained

truncating any other input-output pair originated at a time instant t0 ≤ t1. Note, however, that

the relation St1 may contain input-output pairs, which cannot be obtained by truncation of other

pairs. There is, however, a class of systems of special interest in applications for which every relation

contains only pairs obtained by truncation. This class is characterized as follows.

Definition 1.2. A system is uniform if there exists a relation

S ⊂ UT × Y T , (1.14)

such that for all t0 ∈ T

(u, y) ∈ S ⇒ (u|F (t0), y|F (t0)) ∈ St0 ,

and

(u0, y0) ∈ St0 ⇒ ∃(u, y) ∈ S : (u|F (t0), y|F (t0)) = (u0, y0) .

A uniform system can, therefore, be assigned by means of the relation S, which, roughly speaking,

allows to generate of all relations St0 for t0 ∈ T .

1.2.1 Parametric representations

The use of relations to represent a system provides a very powerful point of view which applies to

a very general set of objects. It is, however, interesting to study if it is possible to determine all

input-output pairs by means of functions. To this end, we recall the following basic result.

Lemma 1.1. Consider two non-empty sets A and B and a relation

R ⊂ A×B .

Then, it is always possible to define a set C and a function4

f : C ×DR→ RR ,

such that

(a, b) ∈ R⇒ ∃c ∈ C : b = f(c, a) ,

3u|F (t1) denotes the restriction of u to t ∈ F (t1).
4DR denotes the domain of R, and RR denotes the range of R.
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and

c ∈ C, a ∈ DR⇒ (a, f(c, a)) ∈ R .

This lemma shows that the function f can be used to specify all, and only, the pairs in the relation R.

The set C is the set of parameters, and the function f is a parametric representation of R. Finally,

the association of f and C to R is said parameterization.

The result expressed in Lemma 1.1 can be used to obtain parametric representations for a system

S. To this end, for any relation St0 it is possible to perform a parameterization, i.e. it is possible to

define a set of parameters Xt0 and a function

ft0 : Xt0 ×DSt0 → RSt0 .

It is then possible to define a parametric representation of the system S by means of a set of functions

F = {ft0 : Xt0 ×DSt0 → RSt0 | t0 ∈ T} .

Note that for uniform systems, described by the relation (1.14), it is enough to consider a

single-function

f : X ×DS → RS .

Remark. For given x0 ∈ Xt0 and given u0 ∈ DSt0 ,the function ft0 can be used to compute the output

of the system as y = ft0(x0, u0). ⋄

1.2.2 Causal systems

The class of systems considered so far are so-called oriented, i.e. there is a natural flow of information

from the input to the output. This implies that we regard the input as a cause and the output as

a consequence. However, these quantities are functions of time. It is, therefore, natural to study

the relationship between the observed effect at time t̄ and the time evolution of the causes. Because

abstract systems are often used to describe the behaviour of physical objects or processes, it is natural

to consider the above relation to be causal, i.e. the output at time t̄ should depend only upon the

input at times t < t̄, or possibly upon the input at times t ≤ t̄.

It is not easy to formalize this idea to input-output relations. The simplest way is to resort to the

parametric representation of the system and to consider the following definition.

Definition 1.3. A system S is causal if it possesses at least one parametric representation F which

is such that for all t0 ∈ T , for all x0 ∈ Xt0 and for all t̄ ∈ F (t0)

u|[t0,t̄] = u′|[t0,t̄] ⇒ ft0(x0, u)(t̄) = ft0(x0, u
′)(t̄) .

A system S is strictly causal if it possesses at least one parametric representation F , which is such

that for all t0 ∈ T , for all x0 ∈ Xt0 and for all t̄ ∈ F (t0)

u|[t0,t̄) = u′|[t0,t̄) ⇒ ft0(x0, u)(t̄) = ft0(x0, u
′)(t̄) .
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We stress that the difference between the notions of causality and strict causality is only on the

constraint on u. In the former case u and u′ have to be identical for all t ∈ [t0, t̄], in the latter for all

t ∈ [t0, t̄).

1.2.3 The notion of state

The crucial point in defining an abstract system by means of a relation is that, in the relation St0

to any given input signal, we can associate several output signals. To single out one output signal,

it is thus necessary to specify further information besides the input function. This information is

associated with the notion of state.

To understand this notion, recall that we have associated, via the process of parameterization, to

each relation St0 a function which associates to an input signal and a parameter x0 ∈ Xt0 a single

output signal. The parameter x0 may be, therefore, regarded as the additional piece of information

needed to specify the output signal in a unique way. However, to give a formal and precise, hence

useful, definition, we have to make sure that the parameterizations performed at each time instant

are related in some way, i.e. they cannot be independent but must satisfy a so-called consistency

condition.

This consistency property will be discussed in the framework of causal systems.

To begin with, note that the set Xt0 , associated with the parameterization St0 , maybe different from

the set Xt1 , associated with the parameterization St1 , and so on for all t ∈ T . It is, therefore,

convenient to define a unique set X such that all sets Xt̄, with t̄ ∈ T , are subsets of X. Consider now

an element x0 ∈ X, thought of as an element of Xt0 , which is the set of parameters associated with

the parameterization of St0 , and a second element x1 ∈ X, thought of as an element of Xt1 , which is

the set of parameters associated to the parameterization of St1 , with t1 > t0. If the system is causal,

there should be a relationship between x1 and x0.

In particular, if we assume that x0 depends only upon the input values for t < t0 and x1 depends

only upon the input values for t < t1, then, recalling that t1 > t0, it is natural to assume that x1

depends upon the input values for t ∈ [t0, t1) and upon x0, and this can be written as

x1 = ϕ(t1, t0, x0, u[t0,t1)) ,

for some function ϕ5.

The discussion above can be extended to any pair of elements in X, hence, it is possible to define the

function ϕ for all pairs of elements of X, for all pairs {t0, t1} such that t0 < t1, and once t0 is fixed

to all u ∈ DSt0 .

Finally, for any t1 ≥ t0 the output is computed as

y(t1) = ft0(x0, u[t0,t1])(t1) .

5 With an alternative convention we could have obtained x1 = ϕ(t1, t0, x0, u[t0,t1]).
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Setting t0 = t1 in the above relation allows to obtain the relation

y(t1) = g(t1, x1, u(t1)) ,

which shows that the output at time t1 depends (only) upon t1, the parameter x1 (which represents

the memory of the system) and the value of the input signal at time t1.

We conclude this discussion by noting that, to a causal system, we have associated a space of

parameters and two functions which provide an alternative representation of input-output pairs.

In fact, for all t1 ≥ t0, we have

y(t1) = g(t1, ϕ(t1, t0, x0, u[t0,t1), u(t1)) ,

and this yields, varying x0 in X and u in DSt0 , all input-output pairs in St0 .

The appearance characterizes this representation, a-side the input and output signals, of an auxiliary

quantity which takes values in the space X. The role of this quantity is to summarize the effect of

past input values, hence to render unique the determination of the present and future output. This

quantity is denominated state or state variable, and the space X is denominated state space.

1.2.4 Definition of state

In the previous section, we have informally introduced the notion of state and highlighted its main

properties. We now provide a formal definition of state.

Definition 1.4. Given a system S and a space of input functions U . A set X is a state space for

the system S if there exist two functions

ϕ : T × T ×X × U → X ,

g : T ×X × U → Y ,

such that the following conditions hold.

• For all t0 ∈ T , u ∈ U and x0 ∈ X

{(u0, y0) ∈ UF (t0) × Y F (t0) : u0(t) = u(t), y0(t) = g(t, ϕ(t, t0, x0, u[t0,t), u(t))} = St0 .

• (Causality) For all t0 ∈ T , for all t ≥ t0 and for all x0 ∈ X

u|[t0,t) = u′|[t0,t) ⇒ ϕ(t, t0, x0, u|[t0,t)) = ϕ(t, t0, x0, u
′|[t0,t)) .

• (Consistency) For all t ∈ T , and for all u ∈ U

ϕ(t, t, x0, u) = x0 .
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• (Separation)6 For all t0 ∈ T , for all t ≥ t0, for all x0 ∈ X and for all u ∈ U

t > t1 > t0 ⇒ ϕ(t, t0, x0, u[t0,t)) = ϕ(t, t1, ϕ(t1, t0, x0, u[t0,t1)), u[t1,t)) .

The function ϕ is called the state transition function, and the function g output transformation. The

triple {X,ϕ, g} is called state space representation, or input-state-output representation, of S.

Remark. In what follows, and to simplify the equations, we use the notation ϕ(t, t0, x0, u) in place of

ϕ(t, t0, x0, u[t0,t)). ⋄

Remark. For the special class of systems in which U , Y and X are composed of a finite number

of elements, for example, all digital electronics systems, the above definition is equivalent to the

definition of a Mealy-type finite state machine. To obtain the definition of a Moore-type finite state

machine, it is necessary to alter the definition of the state, requiring that the state represent the effect

of all past and current input values (see Footnote 5). ⋄

At this stage, one may wonder if the given definition of state space representation is sufficiently

general to develop a systematic theory. To this end, we must address the issues of existence and the

unicity of state space representations. While a complete treatment of such topics is outside the scope

of these notes, we give a few important results and facts.

Theorem 1.1. Given a system S and a space of input functions7 U . The system has a state space

representation if and only if it is causal.

The above statement implies that, under mild technical assumptions, a causal system admits at least

one state space representation. However, such representation need not be unique. In fact, given

a system S and a state space representation {X,ϕ, g}, it is possible to obtain other state space

representations, for example, by means of one of the following procedures.

• (State space transformation) Consider a system S, with state space representation {X,ϕ, g}.
Let ψ : X → Z be an invertible map, i.e. there exists ψ−1 : Z → X such that z = ψ(ψ−1(z))

and x = ψ−1(ψ(x)), for all z ∈ Z and x ∈ X. Define the function

ϕz : T × T × Z × U → Z̃ ,

such that

ϕz(t, t0, z, u[t0,t)) = ψ(ϕ(t, t0, ψ
−1(z), u[t0,t)) ,

and the function

gz : T × Z × U → Ỹ ,

such that

gz(t, z, u) = g(t, ψ−1(z), u) .

6This property is sometimes called semigroup property.
7To be precise, we should assume that the space U be complete, i.e. that it is closed with respect to concatenation

and that, for all t ∈ T , {u(t) ∈ U : u ∈ U} = U .
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Then {Z, ϕz, gz} is a state space representation of S.

• (State augmentation) Consider a system S, with state space representation {X,ϕ, g}. Let

Xa = X × X̃, where X̃ is a non-empty set,

ϕa =

[
ϕ

ϕ̃

]
,

for some function

ϕ̃ : T × T ×Xa × U → X̃ ,

and ga : T × T × Xa × U → Y is such that ga − g = 0. Then {Xa, ϕa, ga} is a state space

representation of S.

We conclude that if a system S admits a state space representation, it admits an infinite number of

representations. Thus, it makes sense to distinguish between the various representations of a system

and to determine (if possible) a representation which is more convenient or adequate for a certain

goal. To this end, we conclude this section by introducing a few new concepts that will be useful in

studying state space representations of particular classes of systems.

Definition 1.5 (Equivalent representations). Two-state space representations {X,ϕ, g} and

{X ′, ϕ′, g′} of a system S are equivalent if

• for all t0 ∈ T and for all x0 ∈ X there exists x′0 ∈ X ′ such that for all u ∈ U and t ≥ t0

g(t, ϕ(t, t0, x0, u), u(t)) = g′(t, ϕ′(t, t0, x
′
0, u), u(t)) .

• for all t0 ∈ T and for all x′0 ∈ X ′ there exists x0 ∈ X such that for all u ∈ U and t ≥ t0

g′(t, ϕ′(t, t0, x
′
0, u), u(t)) = g(t, ϕ(t, t0, x0, u), u(t)) .

Definition 1.6 (Equivalent states). Consider a system S and a state space representation {X,ϕ, g}.
Two elements xa and xb of X are equivalent at t0 if for all u ∈ U and for all t ≥ t0

g(t, ϕ(t, t0, xa, u), u(t)) = g(t, ϕ(t, t0, xb, u), u(t)) .

Remark. Equivalent states are sometimes referred to as non-distinguishable states because it is not

possible to distinguish between them by measurements of the output. ⋄

Definition 1.7 (Reduced state space). Consider a system S and a state space representation

{X,ϕ, g}. The state space X is said to be reduced at t0 if there are no pairs of states equivalent at

t0. If X is reduced at t0 the representation {X,ϕ, g} is said to be reduced at t0.

Remark. A state space can be reduced at some time t0 but not at another time t1. It is possible

to give a notion of reduction independent of time requiring that X be reduced at least at one time

instant. ⋄
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1.2.5 Classification

The notion of a system introduced is very general. In applications, it is often possible to consider

special classes of systems, i.e. to restrict our interest to systems with special properties. To clarify

this issue, we introduce a classification of systems based on some of the key ingredients discussed.

Definition 1.8. A system S is a continuous-time system if T = IR. A system S is a discrete-time

system if T = Z.

Remark. There is a class of systems, increasingly studied and used in applications, in which for some

state variables T = IR and for some other state variables T = Z, i.e. some variables vary continuously

with time, and other variables vary only at discrete time instants. This is the case in systems where a

physical component, for example, a robot, is connected with a supervisor, for example, a machine that

decides which operation the robot has to perform. These systems are denominated hybrid systems. ⋄

Definition 1.9. A system S is said time-invariant if for all t0 ∈ T and for all δ such that t0+ δ ∈ T

(u0(t), y0(t)) ∈ St0 ⇒ (u0(t− δ), y0(t− δ)) ∈ St0+δ .

Definition 1.10. A state space representation is said time-invariant if for all t0 ∈ T , all x0 ∈ X,

all u ∈ U and all t̄ ∈ T

ϕ(t, t0, x0, u) = ϕ(t− t0, 0, x0, u) , g(t, x, u(t)) = g(t̄, x, u(t)) .

Remark. For a time-invariant representation, we can always select t0 = 0. ⋄

Definition 1.11. A system S is said linear if X, U and Y are linear spaces and if, for all t0 ∈ T ,

St0 is a linear subspace of UF (t0) × Y F (t0). A system S which is not linear is called nonlinear.

Definition 1.12. A state space representation is linear if

• the sets U , Y and X are linear spaces

• the set U is a linear subspace of UT

• for all t0 ∈ T and t ∈ T such that t ≥ t0 the function ϕ is linear on X × U

• for all t ∈ T the function g is linear on X × U

Definition 1.13. A state space representation is a finite state representation if the sets U , Y and X

have a finite number of elements.

Definition 1.14. A state space representation is a finite-dimensional representation if the sets U , Y

and X are linear, finite-dimensional spaces.
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1.2.6 Generating functions

In this section, we show that, under certain regularity assumptions, it is possible to obtain an

alternative description of a system. To begin with, consider discrete-time systems and rewrite the

state transition function for t− t0 = 1, i.e.

x(t+ 1) = ϕ(t+ 1, t, x(t), u[t,t+1)) = ϕ(t+ 1, t, x(t), u(t)) .

This equation shows that for a discrete-time system, the value of the state at time t+1 depends upon

t, x(t) and u(t). We can, therefore, write

x(t+ 1) = f(t, x(t), u(t)) ,

where the function f is called the generating function or one-step state update function. Note that,

from the function f , it is possible to reconstruct (uniquely) the state transition function ϕ. Thus, the

triple {X, f, g} can be regarded as the state space representation of a discrete-time system.

It is now natural to wonder if a similar representation can be obtained for continuous-time systems.

To this end, consider the generating function of a discrete-time system and note that (if X is a linear

space)

x(t+ 1)− x(t) = f(t, x(t), u(t))− x(t) ,

which shows that the variation of the state in a time unit is a function of t, x(t) and u(t).

This means that, for continuous-time systems, we are looking at the class of systems for which the

rate of change of the state x(t) can be written as a function of t, x(t) and u(t). These systems have

special importance in applications, where they arise naturally whenever first principles are used to

derive their representation (see some of the examples in Section 1.1).

Motivated by these considerations, we say that the state space representation {X,ϕ, g} is regular, or

differentiable, if there exists a function f : IR×X×U → X such that, for any t0, for any x0 ∈ X and

for any u ∈ U the function ϕ(t, t0, x0, u) is, for all t ∈ F (t0) the (unique) solution of the differential

equation
dϕ(t, t0, x0, u)

dt
= f(t, ϕ(t, t0, x0, u), u(t)) , (1.15)

with the initial condition

ϕ(t0, t0, x0, u) = x0 .

Note that equation (1.15) can be rewritten as

ẋ(t) =
dx(t)

dt
= f(t, x(t), u(t)) .

We conclude by noting that a regular representation {X,ϕ, g} can be alternatively described by the

triple {X, f, g}.

Remark. A state space representation {X, f, g} is time-invariant in f does not depend explicitly on

t, and g is as in Definition 1.10. ⋄
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1.3 Examples revisited

We conclude this chapter by revisiting the examples discussed in Section 1.1 in terms of the concepts

and notions introduced.

• The system (1.1) is a discrete-time, time-invariant, linear, finite-dimensional system without

input. To obtain a state space representation {X, f, g} consider the state variables x1 = Fn−2

and x2 = Fn−1 and note that

X = {(x1, x2) ∈ IR2} ,

f(x) =

[
x2

x1 + x2

]
,

and g(x) = x1 + x2.

• The system (1.2) is a continuous-time, nonlinear, time-invariant, finite-dimensional system, with

input I ∈ IR+, and state (x, y) ∈ IR+ × IR+, described by a generating function. For such a

system, we have not defined an output transformation.

• The system (1.3) is a discrete-time, nonlinear, finite-dimensional system, with input u ∈ IR+,

state (x1, x2, x3) ∈ IR+ × IR+ × IR+, and output y ∈ IR+, described by means of a generating

function. The system is nonlinear because the input, state and output spaces are not linear

spaces.

• The system (1.4) is a continuous-time, nonlinear, time-invariant, finite-dimensional system

with input u ∈ [− tan δM , tan δM ] and state (los, ϑos, φos) ∈ IR × (−π, π] × (−π, π], and

described by means of a generating function. For such a system, we have not defined an output

transformation.

• The system (1.4) is a continuous-time, nonlinear, time-invariant, finite-dimensional system,

without input and with state (x, y, z) ∈ IR3, described by means of a generating function. For

such a system, we have not defined an output transformation.

• The system (1.5)-(1.6) is a continuous-time, nonlinear, finite-dimensional system, without input,

with state (x1, x2, x3) ∈ IR3, and output y ∈ IR2, described by a generating function. The

system is nonlinear because the output transformation is not linear.

• The system (1.7) is a continuous-time, nonlinear, time-invariant, finite-dimensional system, with

input Tb ∈ IR+, and state (ω, v) ∈ IR2, described by a generating function. The output variable

can be selected as the longitudinal slip λ ∈ [−1, 1].

• The system (1.8) is a continuous-time, linear, time-invariant, finite-dimensional system,

without input, and with state (x1, · · · , xn) ∈ IRn, described by a generating function. For such

a system, we have not defined an output transformation.

The system (1.9) is a continuous-time, time-invariant, infinite-dimensional, linear system

without input of with state the set of all functions x(y, t) defined and twice differentiable in

[0, L]× IR. For such a system, we have not defined an output transformation.

• The system (1.10) (resp. (1.11)) is a continuous- (resp. discrete-) time, time-invariant, nonlinear

(in general), finite-dimensional system, with state x ∈ X and without input. For such a system,

we have not defined an output transformation.

AIDAN O. T. HOGG



INTRODUCTION 25

• The system (1.12) is a discrete-time, linear, time-invariant, finite-dimensional system, without

input, and with state x ∈ IRN . For such a system, the output transformation can be regarded

as the identity map.
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2 State-Space Descriptions of Systems

2.1 Introduction

State-space representations offer a comprehensive view of a system’s internal dynamics, while

input-output representations focus on the system’s external behaviour and its interaction with

external signals.

In this section, we explore the state-space and input-output descriptions of systems. The state-space

approach provides an internal view of system dynamics, while the input-output approach, also known

as the external description, captures the system’s response to inputs. We will discuss continuous-time

systems represented by ordinary differential equations and discrete-time systems represented by

ordinary difference equations, focusing on linear systems.

Let us first consider once more systems described by equations of the form

ẋ = f(t, x, u) , (2.16a)

y = g(t, x, u) , (2.16b)

where x ∈ Rn, y ∈ Rp, u ∈ Rm, f : R×Rn ×Rm → Rn, and g : R×Rn ×Rm → Rp. Here t denotes

continuous-time, u denotes system input, y denotes system output, and x denotes the state of the

system. To simplify notation we denote u(t), x(t), y(t) as u, x and y, respectively.

The equation (2.16a) is called the state equation, (2.16b) is called the output equation, and (2.16a)

and (2.16b) constitute the state-space description of continuous-time finite-dimensional systems.

If the system is in discrete-time, t ∈ Z, we use the notation

x+ = f(t, x, u) , y = g(t, x, u) , (2.17)

where we simplify notation by replacing x(t+1) with x+. For convenience and compactness, we also

use the notation

σx = f(t, x, u) , y = g(t, x, u) , (2.18)

where σx stands for ẋ if the system is continuous-time, and σx stands for x+ if the system is

discrete-time.

2.2 State-space representation

An important special case of (2.16) is systems described by the most general state-space representation

of a linear time-invariant system, which is written in the following form

σx = Ax(t) +Bu(t) , (2.19a)

y = Cx(t) +Du(t) , (2.19b)

AIDAN O. T. HOGG



STATE-SPACE DESCRIPTIONS OF SYSTEMS 27

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, and D ∈ Rq×p for p inputs, q outputs and n state variables.

Such equations may arise in the modelling process of a physical system, or they may be a consequence

of a linearization process. It should be noted that for brevity, t is often omitted.

2.3 Trajectory and motion

We now consider again a system described using an input-state-output representation {X,ϕ, g} where

ϕ is the state transition function. We now define a few typical dynamic behaviours of the system.

Definition 2.1 (Trajectory). Consider a system {X,ϕ, g}. A trajectory is the set

T = {x ∈ X : x = ϕ(t, t0, x0, u)} ⊂ X ,

i.e. the set of points in X reached by the state x(t), for t ≥ t0, and a specific initial state x0 and

input signal u.

Definition 2.2 (Motion). Consider a system {X,ϕ, g}. A motion is the set

M = {(t, x(t)) ∈ T ×X : t ∈ F (t0), x(t) = ϕ(t, t0, x0, u)} ⊂ T ×X ,

i.e. the set of points in T ×X taken by the pairs (t, x(t)), for t ≥ t0, and a specific initial state x0

and input signal u.

The main difference between a trajectory and a motion is that they live in different spaces. A motion

is parameterized by t, whereas a trajectory does not contain any information on t. This means that

the trajectory provides solely information on the points of the state-space X visited by the system

during its evolution. In contrast, the motion specifies, in addition, when each point has been visited.

Note, however, that the (natural) projection of a motion along T yields a trajectory.

Figure 2.1 gives an example of a motion and of the corresponding trajectory for a continuous-time

system, with X = R2 and t0 = 0.

2.4 Equilibrium

Definition 2.3 (Equilibrium). Consider a system {X,ϕ, g}. Assume the input u is constant, i.e.

u(t) = u0 for all t and for some constant u0. A state xe is an equilibrium of the system associated

with the input u0 if

xe = ϕ(t, t0, xe, u0) ,

for all t ≥ t0, i.e. an equilibrium is a trajectory composed of a single point.

If the system {X,ϕ, g} possesses a generating function, hence can be described by means of the triple

{X, f, g}, then the computation of equilibria requires the solution of the system of equations

0 = f(t, xe, u0) , (2.20)
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Figure 2.1: A motion (dashed line) and the corresponding trajectory (solid line).

for continuous-time systems and of the systems of equations

xe = f(t, xe, u0) , (2.21)

for discrete-time systems.

Proposition 2.1 (Equilibria of linear systems). Consider a linear, time-invariant system

σx = Ax+Bu , (2.22)

with x ∈ Rn and u(t) ∈ Rm. The set of equilibria is a linear subspace. Moreover, the following hold:

• For u(t) = u0 = 0, the origin is always an equilibrium.

• For continuous-time systems, if A is invertible, for any u0 there is a unique equilibrium

xe = −A−1Bu0. If A is not invertible the system has either infinitely many equilibria (spanning

a linear subspace) or it has no equilibria.

• For discrete-time systems, if I − A is invertible, for any u0 there is a unique equilibrium

xe = (I −A)−1Bu0. If I − A is not invertible the system has either infinitely many equilibria

(spanning a linear subspace) or it has no equilibria.

2.5 Trajectories of linear continuous-time systems

Proposition 2.2 (Trajectories of linear, continuous-time, systems). Consider the continuous-time,

time-invariant, linear system

ẋ = Ax+Bu , y = Cx+Du ,
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with x ∈ X = Rn, u(t) ∈ Rm, y(t) ∈ Rp, initial condition x(0) = x0 and without loss of generality t0

can be set to t0 = 0. Then

x(t) = eAtx0︸ ︷︷ ︸
free response

+

∫ t

0

eA(t−τ)Bu(τ)dτ︸ ︷︷ ︸
forced response

, (2.23)

and

y(t) = CeAtx0︸ ︷︷ ︸
free response

+

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t)︸ ︷︷ ︸
forced response

, (2.24)

where the free response is the component of the solution that arises solely from the system’s initial

conditions in the absence of any input, while the forced response is the portion of the solution that

results directly from the applied input.

Proof. First we need to formally define the matrix exponential eFt for a given(square) matrix F as

eFt = I + Ft+
(Ft)2

2!
+

(Ft)3

3!
+ · · · , (2.25)

where the matrix exponential has the following properties, which can be derived from its definition:

• For every t1 and t2, e
Ft1eFt2 = eF (t1+t2).

• eFteF̃ t = eF̃ teFt = e(F+F̃ )t if and only FF̃ = F̃F , i.e. if and only if F and F̃ commute.

• (eFt)−1 = e−Ft and (eFt)′ = eF
′t.

• If v is an eigenvector of F with eigenvalue λ then v is also an eigenvector of eFt with eigenvalue

eλt.

• d
dte

Ft = FeFt = eFtF .

• T−1eFtT = e(T
−1FT )t.

• If F is diagonal, i.e. F = diag(λ1, λ2, · · · , λn) then eFt is also diagonal and eFt =

diag(eλ1t, eλ2t, · · · , eλnt).

Now consider the simple case where A = 0 and the differential equation is ẋ(t) = Bu(t), with

x(0) = x0 and note that, by a simple integration,

x(t) = x0 +

∫ t

0

Bu(τ)dτ ,

Consider now the variable

z(t) = e−Atx(t) ,

and note that z(0) = x(0), x(t) = eAtz(t) and

ż(t) = e−AtBu .
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Hence

z(t) = z0 +

∫ t

0

Bu(τ)dτ ,

from which we obtain directly equation (2.23) by substituting z(t) = z0 +
∫ t

0
Bu(τ)dτ into x(t) =

eAtz(t). Then (2.24) can be trivially obtained by replacing x(t) in the output transformation. ◁

2.6 Transfer function

The transfer function only captures the input/output properties of a system. That is to say, it only

captures the system’s forced response. To calculate the transfer function, we have to set the initial

conditions to x(0) = 0 then

Y (s) = L
{∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t)
}
, (2.26)

Y (s) = [C(sI −A)−1B +D]U(s) , (2.27)

where the transfer function, G(s), is

G(s) = C(sI −A)−1B +D . (2.28)

2.7 Trajectories of linear discrete-time systems

Proposition 2.3 (Trajectories of linear, discrete-time, systems). Consider the discrete-time,

time-invariant, linear system

x(k + 1) = Ax(k) +Bu(k) , y(k) = Cx(k) +Du(k) , (2.29)

with x(k) ∈ X = Rn, u(k) ∈ Rp, y(k) ∈ Rq and the initial condition x(0) = x0. Then

x(k + 1) = Akx0︸ ︷︷ ︸
free response

+

k−1∑
i=0

Ak−1−iBu(i)︸ ︷︷ ︸
forced response

, (2.30)

and

y(k) = CAkx0︸ ︷︷ ︸
free response

+

k−1∑
i=0

CAk−1−iBu(i) +Du(k)︸ ︷︷ ︸
forced response

, (2.31)

Proof. Using the state-space representation of the system, we have that

x(1) = Ax0 +Bu(0) ,

x(2) = Ax(1) +Bu(1) = A2x0 +AB(0) +Bu(1) ,

x(3) = Ax(2) +Bu(2) = A3x0 +A2B(0) +AB(1) +Bu(2) ,

...
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from which we obtain the expression of x(k). Finally, y(k) is obtained by replacing x(k) in the output

transformation. ◁

Remark. The expression of x(k) can be rewritten as

x(k) = Akx0 +
î
B AB · · · Ak−1B

óu(k − 1)

u(k − 2)
...

u(0)

 . (2.32)

This expression highlights the role of the matrix
î
B AB · · · Ak−1B

ó
in the computation of x(k).

⋄

Remark. If the matrix A is invertible, then the system is reversible, i.e. the knowledge of x(k) and

of the input sequence u(k) in the interval [0, k) allows to compute x0. In fact, from (2.30) we obtain

x0 = A−kx(k)−
k−1∑
i=0

A−i−1Bu(i) , (2.33)

⋄

Remark. The reversibility of continuous-time systems does not require any assumption on the matrix

A. This is because, for any A, the matrix eAt is invertible for any t. ⋄

Remark. The matrices C, A, and B, known as Markov parameters, appearing in (2.31) have a simple

and interesting interpretation for single-input, single-output discrete-time systems. Suppose that

x(0) = 0, that u(0) = 1 and that u(i) = 0 for i ≥ 1. Then

y(0) = D , y(1) = CB , y(2) = CAB , · · · y(h) = CAh−1B ,

i.e. the output yields direct information on the matrices A, B, C and D. The problem of determining

such matrices, hence a state-space representation for the system from the above output sequence, is

the so-called realization problem. ⋄

It is interesting to interpret the results of Propositions 2.2 and 2.3. Equations (2.23) and (2.30) show

that the state of the system at time t is the linear combination of two contributions; the former

depends only upon the initial condition x0 and is denoted free response of the state of the system, the

latter depends only upon the input signal u and is denoted forced response of the state of the system.

Note that the initial condition and the input can be regarded as two independent causes acting on

the system; hence (2.23) and (2.30) show that the principle of superposition holds for such systems.

Analogously, (2.24) and (2.31) show that the output of the system at time t is the linear combination

of two contributions; the former depends only upon the initial condition x0 and is denoted free
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response of the output of the system, the latter depends only upon the input signal u and is denoted

forced response of the output of the system.

Finally, note that (2.23) and (2.30) ((2.24) and (2.31), respectively) yield directly the functions ϕ and

g of a state-space representation of the system.

Remark. Consider the continuous-time, time-invariant, linear system

ẋ = Ax+Bu , y = Cx ,

with x ∈ X = Rn, u(t) ∈ Rp and y(t) ∈ Rq. Suppose the system is between a zero-order hold and

a sampler with sampling period T , i.e. the input is constant over each time interval [kT, (k + 1)T ),

for k ≥ 0, and the output is measured at t = kT , for k ≥ 0. The system viewed from outside

the zero-order hold, and the sampler is a discrete-time, time-invariant, linear system. To obtain a

state-space representation of this discrete-time system, let xk = x(kT ), uk = u(kT ) and yk = y(kT ).

Integrating the above differential equation for t ∈ [kT, (k + 1)T ) yields (recall (2.23))

x(t) = eATxk +

∫ T

0

eA(T−τ)Bu(τ)dτ uk = Adxk +Bduk , (2.34)

whereas the output transformation is given by yk = Cxk. These equations provide a state-space

representation of the discrete-time system seen from outside the zero-order hold and the sampler.

Note that the obtained discrete-time model is exact under the stated operating conditions xk = x(kT ),

for all k ≥ 0. ⋄

2.8 Coordinate transformations

Because of the importance of this concept in the forthcoming sections, we elaborate on the operation

of coordinates transformation. This operation is often used to simplify the state-space representation

of a given system or to highlight some specific property.

Consider a continuous-time, time-invariant, finite-dimensional, linear system described by the

equations

ẋ = Ax+Bu , y = Cx+Du ,

with x ∈ X = Rn, u(t) ∈ Rp, y(t) ∈ Rq, and the change of coordinates

x = Lx̂ , (2.35)

where L is invertible. The state-space representation in the new coordinates is given by

˙̂x = L−1ẋ ,

= L−1(Ax+Bu) = L−1(ALx̂+Bu) ,

= L−1AL︸ ︷︷ ︸
Â

x̂+ L−1B︸ ︷︷ ︸
B̂

u ,
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and

y = CL︸︷︷︸
Ĉ

x̂+ D︸︷︷︸
D̂

u .

The matrices A and Â have the same eigenvalues and the same characteristic and minimal

polynomials, and they are said to be similar.

Motivated by this discussion, we introduce the following definition.

Definition 2.4 (Algebraic equivalent systems). The state-space representations

σx = Ax+Bu , y = Cx+Du ,

with x(t) ∈ Rn, u(t) ∈ Rp, y(t) ∈ Rq, and

σx̂ = Âx̂+ B̂û , ŷ = Ĉx̂+ D̂û ,

with x̂(t) ∈ Rn, û(t) ∈ Rp, ŷ(t) ∈ Rq, are algebraically equivalent if there exists a nonsingular matrix

L such that

Â = L−1AL , B̂ = L−1B , Ĉ = CL , D̂ = D .

Note that, for algebraically equivalent representations, one has

CAiB = ĈÂiB̂ ,

and

CeAtB = ĈeÂtB̂ .
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3 Lyapunov Stability

To study the qualitative behaviour of a system, hence to describe the properties of its trajectories for

all t ∈ T and for t → ∞, we introduce the notion of stability. In addition, this notion allows us to

study the behaviour of trajectories close to an equilibrium point or to a certain motion.

Remark. The notion of stability that we discuss was introduced in 1882 by the Russian mathematician

A.M. Lyapunov in his Doctoral Thesis (hence, it is often referred to as Lyapunov stability). There are

other notions of stability, such as Lagrange stability. Nevertheless, the concept of Lyapunov stability

is the most commonly used in applications. ⋄

3.1 Definition

Consider a system described via a state-space representation {X,ϕ, g} and denote with x(t) the value

of the function ϕ(t, t0, x0, 0), i.e. the value of the state at time t when the input is identically zero

and x(t0) = x0. Recall that x(t) describes the so-called free evolution of the system. Suppose that it

is possible to define a norm on the space X. (If X ⊂ Rn, the Euclidean norm can be defined.)

Definition 3.1 (Lyapunov stability). Consider a system {X,ϕ, g} and an equilibrium point xe. The

equilibrium is stable (in the sense of Lyapunov) if, for every ϵ > 0, there exists a δ = δ(ϵ, t0) > 0

such that

∥x(t0)− xe∥ < δ , (3.36)

implies

∥x(t)− xe∥ < ϵ , (3.37)

for all t ≥ t0

In stability theory, the quantity x(t0) − xe is called initial perturbation, and x(t) = ϕ(t, t0, x0, 0) is

called perturbed evolution.

Therefore, an equilibrium xe is stable if, for any neighbourhood of xe (even very small), the perturbed

evolution stays within this neighbourhood for all initial perturbations belonging to a sufficiently small

neighbourhood of xe.

The definition of stability can be interpreted as follows. An equilibrium point xe is stable if, however,

we select a tolerable deviation ϵ, there exists a (sufficiently small) region with the equilibrium xe in

its interior, such that all initial perturbations in this region give rise to trajectories which are within

the tolerable deviation.

Remark. The constant δ is, in general, a function of t0. If it is possible to define a δ which does not

depend upon t0, we say that the equilibrium is uniformly stable. Note that if an equilibrium of a

time-invariant system is stable, it is also uniformly stable. ⋄

The property of stability dictates a condition on the free evolution of the system for all t ≥ t0.

Note, however, that in the definition of stability, we have not requested that the perturbed evolution
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converges, for t → ∞, to xe. This convergence property is very important in applications, as it

allows us to characterize the situation in which not only the perturbed evolution remains close to the

unperturbed evolution, but it also converges to the initial (unperturbed) evolution. To capture this

property, we introduce a new definition.

Definition 3.2 (Asymptotic stability). Consider a system {X,ϕ, g} and an equilibrium point xe.

The equilibrium is asymptotically stable if it is stable and if there exists a constant δa = δa(ϵ, t0) such

that

∥x(t0)− xe∥ < δa ,

implies

lim
t→∞

∥x(t)− xe∥ = 0 . (3.38)

In summary, an equilibrium point is asymptotically stable if it is stable and whenever the initial

perturbation is inside a certain neighbourhood of xe, the perturbed evolution converges, as t→ ∞, to

the equilibrium point, which is said to be attractive. From a physical point of view, this means that

all sufficiently small initial perturbations give rise to effects which can be a-priori bounded (stability),

and these vanish as t→ ∞ (convergence).

It is important to realize that convergence does not imply stability: it is possible to have an equilibrium

of a system which is not stable (i.e. it is unstable), yet for all initial perturbations the perturbed

evolution converges to the equilibrium.

Remark. To define the notion of uniform asymptotic stability, it is important to understand the role

of t0 in the convergence property. The existence of the limit in (3.38) implies that for any κ > 0 there

is a time ta such that

∥x(t)− xe∥ ≤ κ , (3.39)

for all t ≥ ta. The value ta is a function of κ (consistently with the definition of limit) but may

also be a function of t0. Therefore, the convergence property depends upon t0 in two ways: firstly

through the constant δa(ϵ, t0) and secondly on the fact that the speed of convergence of ∥x(t)− xe∥,
which can be measured by ta − t0, depends upon t0. If δa and ta − t0 are not functions of t0, then

the convergence is uniform. Finally, if the equilibrium is uniformly stable, and if the convergence

property is uniform, the equilibrium is uniformly asymptotically stable. ⋄

Definition 3.3 (Global asymptotic stability). Consider a system {X,ϕ, g} and an equilibrium point

xe. The equilibrium is globally asymptotically stable if it is stable and if, for all x(t0) ∈ X,

lim
t→∞

∥x(t)− xe∥ = 0 .

Remark. The property of global asymptotic stability is very strong, and it has important

implications for the structure of the underlying state-space realization. For example, in the case

of finite-dimensional, time-invariant systems, it implies that X = Rn. This fact, which is the

consequence of a very delicate theorem of J.W. Milnor, is sometimes informally explained with the

sentence, “it is not possible to comb the hair on a sphere without leaving a crown somewhere”. ⋄
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Obviously, the property of global asymptotic stability is much stronger than the property of

asymptotic stability (which is often referred to as local asymptotic stability), as it requires that the

effect of all initial perturbations vanishes as t→ ∞.

Suppose an equilibrium xe is not globally asymptotically stable. In that case, it is possible to

determine a region of X, containing xe, such that for all initial conditions in this region, the free

evolution converges to xe. This region is known as the region of attraction of the equilibrium xe.

Note that if xe is globally asymptotically stable, then its region of attraction will coincide with X.

The property of asymptotic stability can be strengthened by imposing conditions on the convergence

speed of ∥x(t)− xe∥.

Definition 3.4 (Exponential stability). Consider a system {X,ϕ, g} and an equilibrium point xe.

The equilibrium is exponentially stable if there exists λ > 0 such that for all ϵ > 0 there exists a

δ = δ(ϵ) > 0 such that

∥x(t0)− xe∥ < δ ,

implies

∥x(t)− xe∥ < ϵe−λ(t−t0) , (3.40)

for all t ≥ t0.

Remark. The property of exponential stability implies the property of stability and the property of

uniform asymptotic stability. ⋄

Definition 3.5 (Stability of motion). Consider a system {X,ϕ, g} and a motion

M = {(t, x(t)) ∈ T ×X : t ∈ F (t0), x(t) = ϕ(t, t0, x0, u)} .

The motion is stable if for every ϵ > 0 there exists a δ = δ(ϵ, t0) > 0 such that

∥x(t0)− x0∥ < δ ,

implies

∥ϕ(t, t0, x(t0), u)− ϕ(t, t0, x0, u)∥ < ϵ , (3.41)

for all t ≥ t0.

The notion of stability of motion is substantially similar to the notion of stability of an equilibrium.

The important issue is that the time-parameterization is important, i.e. a motion is stable if, for small

initial perturbations, for any t ≥ t0, the perturbed evolution is close to the non-perturbed evolution.

This does not mean that if the perturbed and unperturbed trajectories are close, then the motion is

stable. In fact, the trajectories may be close but may be followed with different timing, which means

that for some t ≥ t0 condition (3.41) may be violated.
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3.2 Stability of linear systems

The notion of stability relies on the knowledge of the trajectories of the system. As a result, even if

this notion is very elegant and useful in applications, it is, in general, very hard to assess the stability

of an equilibrium or of a motion. There are, however, classes of systems for which it is possible to

give stability conditions without relying upon the knowledge of the trajectories.

Linear systems belong to one such class. Therefore, in this section, we study the stability of linear

systems, and we show that, because of the linear structure, it is possible to assess the properties of

stability and attractivity in a simple way.

To begin with, we recall some properties of linear representations.

Proposition 3.1. Consider a system with a linear state-space representation. Then (asymptotic)

stability of one motion implies (asymptotic) stability of all motions. In particular, the (asymptotic)

stability of any motion implies and is implied by the (asymptotic) stability of the equilibrium xe = 0.

Proof. It is enough to prove the second claim. Consider a motion ϕ(t, t0, x0, u) and note that, by

definition, the motion is stable if for every ϵ > 0 there exists a δ = δ(ϵ, t0) > 0 such that

∥x(t0)− x0∥ < δ , (3.42)

implies

∥ϕ(t, t0, x(t0), u)− ϕ(t, t0, x0, u)∥ < ϵ , (3.43)

for all t ≥ t0. However, by linearity of the state-space representation

ϕ(t, t0, x(t0), u)− ϕ(t, t0, x0, u) = ϕ(t, t0, x(t0)− x0, 0) . (3.44)

Hence, the motion is stable if and only if the equilibrium xe = 0 is stable. An analogous argument

can be used to prove the asymptotic stability claim. ◁

The above statement, together with the result in Proposition 2.1, implies the following important

properties.

Proposition 3.2. If the origin of the linear representation of a system is asymptotically stable, then

necessarily, the origin is the only equilibrium of the system for u = 0. Moreover, the asymptotic

stability of the zero equilibrium is always global. Finally, uniform asymptotic stability implies

exponential stability.

The above discussion shows that the stability properties of a motion (e.g. an equilibrium) of a linear

representation are inherited by all motions of the system. Moreover, for linear representations, local

properties are always global properties. This means that, with some abuse of terminology, we can

refer to the stability properties of the linear representation. For example, we say that a linear

representation is stable, meaning all its motions are stable. Note that it does not make sense to say

that a nonlinear representation or a nonlinear system is stable despite the fact that this terminology

is often used!
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The stability results discussed in this section apply to general linear representations. In particular,

it is not necessary to assume that X = Rn, for some n ≥ 1. However, in this case, i.e. in the case of

a finite-dimensional linear representation, it is possible to obtain very simple stability tests.

To derive such tests, note that, by the linearity of ϕ and by the finite dimensionality of X = Rn, we

have that

ϕ(t, t0, x0, 0) = Φ(t, t0)x0 ,

where Φ(t, t0), defined for all t ≥ t0, is a square matrix of dimension n × n, known as the state

transition matrix. For finite-dimensional linear representations, this matrix plays a central role in the

study of stability properties.

Proposition 3.3. A linear, finite-dimensional representation is stable if and only if

∥Φ(t, t0)∥ ≤ k , (3.45)

for all t ≥ t0 and for some k > 0 possibly dependent on t0.

Proof. We prove only the sufficient part. For, suppose condition (3.45) holds. Then

∥x(t)∥ = ∥Φ(t, t0)x0∥ ≤ k∥x0∥ .

Therefore, for any ϵ > 0 the selection

δ =
ϵ

k
,

is such that

∥x0∥ < δ ,

implies

∥x(t)∥ < ϵ ,

for all t ≥ t0, which is the stability property for the equilibrium xe = 0. ◁

A similar result, with conceptually similar proof, holds with respect to the property of asymptotic

stability.

Proposition 3.4. A linear, finite-dimensional representation is asymptotically stable if and only if

∥Φ(t, t0)∥ ≤ k ,

for all t ≥ t0, and for some k > 0 possibly dependent on t0, and

lim
t→∞

Φ(t, t0) = 0 .

We conclude this section by noting that the above statements can be further simplified if we assume,

in addition, that the linear representation is time-invariant. To develop these tests, we need to assume

time-invariance.
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Proposition 3.5. The equilibrium x0 of a linear, finite-dimensional, time-invariant representation

is asymptotically stable if and only if it is attractive.

This result implies that for linear, finite-dimensional, time-invariant representations, the attractivity

of the zero equilibrium implies the stability of the zero equilibrium. This implies that stability is a

property of the matrix A (see equation (2.19)). Moreover, as the properties are uniform, attractivity

implies uniform asymptotic stability and hence exponential stability.

Proposition 3.6. The equilibrium xe = 0 of a linear, finite-dimensional, time-invariant

representation is stable if and only if the following conditions hold.

• In the case of continuous-time systems, the eigenvalues of A with geometric multiplicity8 equal

to one have a non-positive real part, and the eigenvalues of A with geometric multiplicity larger

than one have a negative real part.

• In the case of discrete-time systems, the eigenvalues of A with geometric multiplicity equal to

one have modulo not larger than one, and the eigenvalues of A with geometric multiplicity larger

than one have modulo smaller than one.

Proof. Recall that, for the considered class of representations, stability implies and is implied by the

boundedness of the state transition matrix.

For continuous-time systems the state transition matrix, with t0 = 0, is (see equation (2.25))

eAt =

r∑
i=1

mi∑
k=1

Rik
tk−1

(k − 1)!
eλit ,

where mi is the geometric multiplicity of the eigenvalue λi. This matrix is bounded if and only if the

conditions in the statement hold.

Similarly, for discrete-time systems, the state transition matrix, for t0 = 0 and t ≥ 1, is

At =

r∑
i=1

mi∑
k=1

Rik
tk−1

(k − 1)!
λt−k+1
i ,

and this is bounded if and only if the conditions in the statement hold. ◁

Proposition 3.7. The equilibrium xe = 0 of a linear, finite-dimensional, time-invariant

representation is asymptotically stable if and only if the following conditions hold.

8 To define the geometric multiplicity of an eigenvalue, we need to recall a few facts. Consider a matrix A ∈ Rn×n

and a polynomial p(λ). The polynomial p(λ) is a zeroing polynomial for A if p(A) = 0. Note that, by Cayley-Hamilton
Theorem, the characteristic polynomial of A is a zeroing polynomial for A. Among all zeroing polynomials, there is a
unique monic polynomial pM (λ) with smallest degree. This polynomial is called the minimal polynomial of A. Note
that the minimal polynomial of A is a divisor of the characteristic polynomial of A. If A has r distinct eigenvalues λ1,
..., λr then

pM (λ) = (λ− λ1)
m1 (λ− λ2)

m2 · · · (λ− λr)
mr ,

where the numbers mi denote by definition the geometric multiplicity of λi. This means that the geometric multiplicity
of λi equals the multiplicity of λi as a root of pM (λ). Recall, finally, that the multiplicity of λi as a root of the
characteristic polynomial is called algebraic multiplicity.
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• In the case of continuous-time systems, the eigenvalues of A have all negative real part.

• In the case of discrete-time systems, the eigenvalues of A have all modulo smaller than one.

Proof. The proof is similar to that of the previous proposition. Once it is noted that, for the considered

class of representations, asymptotic stability implies and is implied by boundedness and convergence

of the state transition matrix. ◁

We conclude this discussion with an alternative characterization of asymptotic stability, the proof of

which is outside the scope of these lecture notes.

Proposition 3.8. The equilibrium xe = 0 of a linear, finite-dimensional, time-invariant

representation is asymptotically stable if and only if the following conditions hold.

• In the case of continuous-time systems, there exists a positive definite matrix9 P = P ′ such that

A′P + PA < 0 .

• In the case of discrete-time systems, there exists a positive definite matrix P = P ′ such that

A′PA− P < 0 .

To complete our discussion, we stress that stability properties are associated with the specific

state-space representation of the system that we consider. Thus, another state-space representation

of the same system may have different stability properties. Nevertheless, representations that are

related by a change of coordinates with specific properties have the same stability properties. We

discuss this issue with reference to linear representations and linear change of coordinates. To this

end, consider a change of coordinates described by

x(t) = L(t)x̂(t) , (3.46)

9A square and symmetric matrix P ∈ Rn×n is positive definite, denoted P > 0, if

v′Pv > 0 ,

for all nonzero vectors v ∈ Rn. Note that the symmetry condition is without loss of generality. In fact, a nonsymmetric
matrix M is the sum of a symmetric matrix P and an anti-symmetric matrix Q. Hence

v′Mv = v′(P +Q)v = v′Pv .

To test the positivity of a symmetric matrix

P =


p11 p12 p13 · · · p1n
p12 p22 p23 · · · p2n
p13 p23 p33 · · · p3n
...

...
...
. . .

...
p1n p2n p3n · · · pnn

 ,

we could use the Sylvester test, which states that P = P ′ > 0 if and only if

p11 > 0 ,

∣∣∣∣ p11 p12
p12 p22

∣∣∣∣ > 0 ,

∣∣∣∣∣∣
p11 p12 p13
p12 p22 p23
p13 p23 p33

∣∣∣∣∣∣ > 0 , · · · detP > 0 .

Note, finally, that a matrix P is negative definite, denoted P < 0 is −P > 0.
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with L(t) invertible for all t, and note that the state transition matrix of the representation with

state x̂ is given by

Φ̂(t, t0) = L−1(t)Φ(t, t0)L(t0) .

As a consequence, the following results hold.

Proposition 3.9. Consider a state-space representation of a linear, finite-dimensional system and

assume it is (asymptotically) stable. Then, any representation obtained by means of a change of

variable of the form (3.46) is (asymptotically) stable if and only if

∥L(t)∥ ≤ k1 , ∥L−1(t)∥ ≤ k2 , (3.47)

for some constants k1 and k2, and for all t.

Corollary 3.1. Consider a state-space representation of a linear, finite-dimensional, time-invariant

system and assume it is (asymptotically) stable. Then, any representation obtained by means of a

change of variable of the form (3.46) with L(t) constant and invertible is (asymptotically) stable.

Proof. It is enough to note that if L(t) is constant and invertible, then condition (3.47) holds. ◁
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4 Structural Properties - Reachability and Controllability

4.1 Introduction

In this section and the next, we focus on linear, time-invariant systems, namely systems described by

equations of the form

σx = Ax+Bu , y = Cx+Du , (4.48)

with x ∈ X = Rn, u(t) ∈ Rp, y(t) ∈ Rq and A, B, C, and D matrices of appropriate dimensions and

with constant entries.

For such a class of systems, we study the input-to-state and state-to-output interactions, which are

characterized by the so-called structural properties: reachability and controllability, observability and

reconstructability, respectively.

These properties allow us to quantify and describe in a precise way the effect of input signals on the

state of the system and the ability to reconstruct the state of the system by means of measurements of

the output variable. These properties are naturally defined in terms of properties of the trajectories

of the system. However, because of linearity and time-invariance, it is possible to characterize such

properties in terms of properties of the matrices arising in the state-space representation.

When studying the input-to-state interaction, we can take two different points of view. In the former,

we assume that the initial state of the system, i.e. the state of the system at time t = 0, is fixed,

and we consider the problem of determining the states of the system that can be reached by applying

a certain input signal over a given period of time. In this case, we study the so-called reachability

property. In the latter, we assume that the final state of the system, at some time T , is fixed, and

we aim to determine all initial states that can be steered by means of a certain input signal to the

selected final state. In this case, we study the so-called controllability property.

In the study of reachability and controllability, whenever the input signal that drives a certain initial

state to a certain final state is not unique, we could impose constraints on such an input signal, e.g.

we could consider the input signal with minimum energy, or with minimum amplitude, or the input

signal which achieves the transfer in minimum time. If no constraint is imposed, all input signals

achieving the considered transfer are equivalent.

For linear systems, the properties of reachability and controllability are referred to as the state x = 0;

hence, we say that a state is reachable means that it is reachable from x = 0 and that a state is

controllable means that it is controllable to x = 0. Note, moreover, that because these properties are

used to describe the input-to-state interaction, they trivially depend only upon the properties of the

matrices A and B.

4.2 Reachability of discrete-time systems

Consider a linear, time-invariant, discrete-time system. Let x(0) = 0 and consider an input sequence

u(0), u(1), u(2), · · · , u(k − 1). The state reached at t = k is given by
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x(k) =
î
B AB · · · Ak−1B

ó u(k − 1)

u(k − 2)
...

u(0)

 .
This implies that the set of states that can be reached at t = k is a linear space, i.e. it is the subspace

Rk spanned by all linear combinations of the columns of the matrix

Rk =
î
B AB · · · Ak−1B

ó
,

i.e.

Rk = ImRk.

The setRk is a vector space, denoted as the reachable subspace in k steps. IfRk = X, i.e. rankRk = n,

then all states of the system are reachable in (at most) k steps and the system is said to be reachable

in k steps.

As k varies, we have a sequence of subspaces, namely

R1, R2, · · · , Rk, · · · . (4.49)

This sequence of subspaces is such that the following properties hold.

Proposition 4.1. The sequence of subspaces (4.49) is such that

R1 ⊆ R2 ⊆ · · · ⊆ Rk ⊆ · · · .

Moreover, if for some k̄, Rk̄ = Rk̄+1, then, for all k ≥ k̄, Rk = Rk̄. Finally,

R1 ⊆ R2 ⊆ · · · ⊆ Rn = Rn+1.

Proof. To prove the first claim, note that if a state x̄ is reached from zero in k steps, using the input

sequence u(0), u(1), · · · , u(k− 1), then the same state is also reached from zero in k+ 1 steps, using

the input sequence 0, u(0), u(1), · · · , u(k − 1), hence, for all k ≥ 1, Rk ⊆ Rk+1.

To prove the second claim, it is enough to show that

Rk̄ = Rk̄+1 ⇒ Rk̄+1 = Rk̄+2, (4.50)

or, equivalently that if Rk̄ = Rk̄+1, then any x̄ ∈ Rk̄+2 belongs also to Rk̄+1. For, let x̄ be an

element of Rk̄+2. This means that there is an input sequence which steers the state of the system

from x(0) = 0 to x̄ in k̄ + 2 steps. Consider now the state reached after k̄ + 1 steps, using the same

input sequence, which we denote with x̃. By assumption, x̃ ∈ Rk̄+1 = Rk̄, hence there is an input

sequence which steers the state of the system from x(0) = 0 to x̃, in k̄ steps. However, by definition

of x̃, it is possible to steer x̃ to x̄ in one step; hence there is an input sequence which steers x(0) = 0

to x̄, in k̄ + 1 steps, which proves the claim.
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To prove the third claim, note that if, for some k < n, Rk = Rk+1 then the claim follows from equation

(4.50). Suppose now that, for all k, the dimension of Rk+1 is strictly larger than the dimension of

Rk. This implies that the sequence

dim Rk

is strictly increasing at each step. However, this sequence is bounded (from above) by n, and this

proves the claim. ◁

Definition 4.1. Consider the discrete-time system (4.48). The subspace R = Rn is the reachability

subspace of the system.

The matrix R = Rn is the reachability matrix of the system.

The system is said to be reachable if R = X = Rn.

Remark. By definition,

R = ImR,

hence the discrete-time system (4.48) is reachable if and only if

rankR = n. (4.51)

Equation (4.51) is known as Kalman reachability rank condition and was derived by R.E. Kalman in

the 60’s. ⋄

Remark. From the above discussion, it is obvious that in a n-dimensional, linear, discrete-time system,

if a state x̄ is reachable, then it is reachable in at most n steps. This does not mean that n steps are

necessarily required, i.e. the state x̄ could be reached in less than n steps. In a reachable system, the

smallest integer k⋆ such that

rankRk⋆ = n

is called the reachability index of the system. Note that, for single-input reachable systems,

necessarily, k⋆ = n. ⋄

The reachability subspace R has the following important property, the proof of which is a simple

consequence of the definition of the subspace.

Proposition 4.2. The reachability subspace contains the subspace spanB, i.e.

spanB ⊆ R,

and it is A-invariant, i.e.

AR ⊆ R.

We conclude this section by noting that algebraically equivalent systems have the same reachability

properties. In particular, consider two algebraically equivalent systems, with state x and x̂,
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respectively. Let L be the coordinates transformation matrix, as given in equation (2.35), Rk and

R̂k the reachability subspaces, and R and R̂ the reachability matrices, respectively. Then

R̂k = L−1Rk,

hence

R̂ = L−1R,

and one of the two systems is reachable if and only if the other is.

4.3 Controllability of discrete-time systems

The results established for the reachability property can be easily exploited to characterize the

controllability property. In fact, for a linear, time-invariant, discrete-time system, a state x⋆ is

controllable (to zero) in k steps if there exists an input sequence u(0), u(1), · · · , u(k− 1) that drives

the state from x(0) = x⋆ to x(k) = 0, i.e.

0 = Akx⋆ +
î
B AB · · · Ak−1B

ó u(k − 1)

u(k − 2)
...

u(0)

 ,

or equivalently

−Akx⋆ =
î
B AB · · · Ak−1B

ó u(k − 1)

u(k − 2)
...

u(0)

 .

This last equation implies that x⋆ is controllable if the state −Akx⋆ is reachable in k steps, hence if

−Akx⋆ ∈ Rk. (4.52)

It is easy to see that the set of all x⋆ such that equation (4.52) holds is a vector space, denoted by

Ck, and called the controllability subspace in k steps.

A linear, discrete-time system is controllable in k steps if

ImAk ⊆ Rk.

Similarly to the reachability subspaces, as k varies we have a sequence of controllability subspaces,

namely

C1, C2, · · · , Ck, · · · . (4.53)

This sequence of subspaces is such that the following properties hold.
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Proposition 4.3. The sequence of subspaces (4.53) is such that

C1 ⊆ C2 ⊆ · · · ⊆ Ck ⊆ · · · .

Moreover, if for some k̄, Ck̄ = Ck̄+1, then, for all k ≥ k̄, Ck = Ck̄. Finally,

C1 ⊆ C2 ⊆ · · · ⊆ Cn = Cn+1.

Proof. The proof of this statement is similar to the one of Proposition 4.1. We simply remark that

if a state is controllable in k steps, using the input sequence u(0), u(1), · · · , u(k − 1), then the same

state is also controllable in k + 1 steps,using the input sequence u(0), u(1), · · · , u(k − 1), 0. ◁

Definition 4.2. Consider the discrete-time system (4.48). The subspace C = Cn is the controllability

subspace of the system.

The system is said to be controllable if C = X = Rn.

The discrete-time system (4.48) is controllable if and only if

ImAn ⊆ R. (4.54)

In particular, if A is nilpotent, i.e. Aq = 0, for some q ≤ n, then for any B (even B = 0) the system is

controllable. Note that a reachable system is controllable, but the converse statement does not hold.

In particular

R ⊆ C ⊆ X = Rn.

4.4 Construction of input signals

The study of the properties of reachability and controllability leads to the following question. Is it

possible to explicitly construct an input sequence which steers the state of the system from an initial

condition x0, i.e. x(0) = x0, to a final condition xf in k steps, i.e. x(k) = xf?

To answer this question, consider the problem of determining an input sequence u(0), u(1), · · · ,
u(k − 1) such that

xf −Akx0 = RkUk−1, (4.55)

where

Uk−1 =



u(k − 1)

u(k − 2)
...

u(1)

u(0)

 ∈ Rkm.

To solve the problem, we have to solve the linear system (4.55) in the unknown Uk−1. This system

has a solution if, and only if,

xf −Akx0 ∈ ImRk, (4.56)
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which clearly shows the role of the matrices Rk in solving the considered problem. Note that the

input sequence achieving the desired goal may not be unique. In particular, several solutions can be

obtained as the linear combination of a particular solution of equation (4.56) and a solution of the

homogeneous equation

RkUk−1 = 0.

In the special case of a reachable system, it is possible to obtain an explicit expression for one

input sequence, solving the considered problem in n steps. To this end, note that by reachability,

rankRn = n, hence the condition expressed in equation (4.56), with k = n, holds.

Consider now an input signal defined as

Un−1 = R′
nv,

where v has to be determined. Using this definition and setting k = n, equation (4.55) becomes

xf −Anx0 = RnR
′
nv,

where the matrix RnR
′
n is square and invertible. Hence, a control sequence solving the considered

problem in n steps is given by

Un−1 = R′
n(RnR

′
n)

−1(xf −Anx0).

It is possible to show that, among all input sequences steering the state of the system from x0 to xf

in n steps, the one constructed has minimal norm (energy).

4.5 Reachability and controllability of continuous-time systems

The properties of reachability and controllability for linear, time-invariant, continuous-time systems

can be assessed using the same ideas exploited in the case of discrete-time systems. However, the

tools are more involved as the input-state relation is expressed by means of an integral (see equation

(2.23)).

Consider the reachability problem, i.e. the initial state of the system is x(0) = 0 and we want to

characterize all states x̄ that can be reached in some interval of time t, i.e. all states such that, for

some input function u(t),

x̄ =

∫ t

0

eA(t−τ)Bu(τ) dτ.

Note now that, by Cayley-Hamilton Theorem

eAt = α0(t)I + α1(t)A+ · · ·+ αn−1(t)A
n−1,
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for some scalar functions αi(t). Hence

x̄ =
î
B AB · · · An−1B

ó


∫ t

0

α0(t− τ)u(τ) dτ∫ t

0

α1(t− τ)u(τ) dτ

...∫ t

0

αn−1(t− τ)u(τ) dτ


.

This implies that a state x̄ is reachable only if

x̄ ∈ Im
î
B AB · · · An−1B

ó
= ImR.

We now prove the converse fact, i.e. that if a state is in the image of R, then it is reachable. To this

end, define the controllability Gramian

Wt =

∫ t

0

eA(t−τ)BB′eA
′(t−τ) dτ,

with t > 0, and note that10

ImR = ImWt. (4.57)

Selecting

u(τ) = B′eA
′(t−τ)β,

where β is a constant vector, yields

x̄ =Wtβ. (4.58)

Hence, to assess the reachability of the state x̄ ∈ ImR, it is sufficient to show that equation (4.58)

has (at least) one solution β. However, this fact holds trivially by condition (4.57).

Remark. Unlike the case of discrete-time systems, where the set of reachable states depends upon the

length of the input sequence for continuous-time systems, if a state is reachable, then it is reachable

in any (possibly small) interval of time. ⋄

Definition 4.3. Consider the continuous-time system (4.48). The subspace R is the reachability

subspace of the system.

The matrix R is the reachability matrix of the system.

The system is said to be reachable if R = X = Rn.

We summarize the above discussion with a formal statement.

Proposition 4.4. Consider the continuous-time system (4.48). The following statements are

equivalent.

10The proof of this property is not trivial.
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• The system is reachable.

• rankR = n.

• For all t > 0 the controllability Gramian Wt is positive definite.

Remark. If a system is reachable, then it is possible to explicitly determine one input signal which

steers the state of the system from x(0) = 0 to any x̄ in a given time t > 0. In fact, to determine one

such input signal, it is sufficient to solve the equation (4.58), which, if the system is reachable, has a

unique solution

β =W−1
t x̄,

i.e. the input signal

u(τ) = B′eA
′(t−τ)W−1

t x̄ (4.59)

steers the state of the system from x(0) = 0 to x(t) = x̄. Similarly to what was discussed in Section

4.4, it is possible to prove that, among all input signals steering the state from 0 to x̄ in time t, the

input signal (4.59) is the one with minimum energy. Similar considerations can be done to determine

an input signal steering a nonzero initial state to a given final state. ⋄

To discuss the property of controllability note that a state x̄ is controllable (to zero) in time t > 0 if

there exists an input signal such that

0 = eAtx̄+

∫ t

0

eA(t−τBu(τ) dτ.

This, however, implies that

eAtx̄ ∈ R

hence

x̄ ∈ e−AtR.

This implies that the set of controllable states in time t > 0 is the set

Ct = e−AtR,

which has the same dimension as R, by invertibility of e−At for all t, and it is contained in R, by the

fact that R is A-invariant, hence it is trivially e−At-invariant. As a consequence, for all t > 0,

Ct = R,

which shows that the set C of controllable states does not depend upon t > 0 and that a

continuous-time system is controllable if and only if it is reachable (unlike what happens for

discrete-time systems, for which reachability implies, but it is not implied by, controllability).

4.6 A canonical form for reachable systems

In this section, we focus on single-input systems, and we show that the property of reachability allows

us to write the system in a special form known as reachability canonical form.
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Consider the system (4.48), with m = 1, and suppose the system is reachable, i.e. the rank of the

reachability matrix is equal to n. By reachability, there is a (row) vector l such that

lB = 0 lAB = 0 lAn−2B = 0 lAn−1B = 1. (4.60)

In fact, conditions (4.60) can be rewritten as

lR =
î
0 0 · · · 0 1

ó
(4.61)

hence

l =
î
0 0 · · · 0 1

ó
R−1

is well-defined. The vector l has the following important property.

Lemma 4.1. Let l be as in equation (4.61). Then, the square matrix

T =



l

lA
...

lAn−2

lAn−1


is invertible.

Proof. Consider the matrix

TR =



l

lA
...

lAn−2

lAn−1


î
B AB · · · An−2B An−1B

ó

=



lB lAB · · · lAn−2B lAn−1B

lAB lA2B · · · lAn−1B lAnB

...
... . .

. ...
...

lAn−2B lAn−1B · · · · · · · · ·

lAn−1B · · · · · · · · · · · ·


and note that, by conditions (4.60),

TR =



0 0 · · · 0 1

0 0 · · · 1 lAnB
...

... . .
. ...

...

0 1 · · · · · · · · ·
1 lAnB · · · · · · · · ·
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which shows that |det(TR)| = 1, hence T is invertible. ◁

The matrix T can be used to define a new set of coordinates x̂ such that

x̂ = Tx.

To derive the state-space representation of the system in the x̂ coordinates, we could use the general

discussion in Section 2.8. However, it is easier to proceed in an alternative way. For, consider the

auxiliary signal

x̂1 = lx

and note that

σx̂1 = lAx = x̂2,

σx̂i = lAix = x̂i+1,

for i = 1, · · · , n− 1 and

σx̂n = lAnx+ u = lAnT−1x̂+ u.

As a result, in the new coordinates, x̂, one has

σx̂ = Arx̂+Brx̂, (4.62)

where

Ar =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 0 · · · 1

−α0 −α1 −α2 · · · −αn−1

 Br =



0

0
...

0

1

 ,

and î
−α0 −α1 −α2 · · · −αn−1

ó
= lAnT−1.

Note that for any αi, the system (4.62) is reachable, hence a system described by equation (4.62) is

said to be in reachability canonical form.

The matrix Ar is in companion form. It is worth noting that its characteristic polynomial is

p(s) = sn + αn−1s
n−1 + αn−2s

n−2 + · · ·+ α1s+ α0,

i.e. it depends only upon the elements of the last row.

4.7 Description of non-reachable systems

In this section, we study systems which are not reachable, i.e. systems described by the equation

(4.48) and such that

rankR = ρ < n.
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Under this assumption, consider a set of coordinates x̂ such that

x = Lx̂,

and the matrix L is constructed as follows. The first ρ columns of L are ρ linearly independent

columns of the matrix R, and the last n− ρ columns are selected in such a way that the matrix L is

invertible11.

The system in the x̂ coordinates, which is algebraically equivalent to the system in the x coordinates,

is described by the equations

σx̂ = Âx̂+ B̂u = L−1ALx̂+ L−1Bu.

We now show that, because of the way in which L has been constructed, the matrices Â and B̂ have

a special structure. To this end, note that

LÂ = AL LB̂ = B

and partition the matrices L, A, Â, B and B̂ as

L =

[
L11 L12

L21 L22

]
, A =

[
A11 A12

A21 A22

]
, Â =

[
Â11 Â12

Â21 Â22

]
,

B =

[
B1

B2

]
, B̂ =

[
B̂1

B̂2

]
,

where L11, A11 and Â11 have dimensions ρ × ρ; L12, A12 and Â12 have dimensions ρ × n − ρ; L21,

A21 and Â21 have dimensions n− ρ× ρ; L22, A22 and Â22 have dimensions n− ρ× n− ρ; B1 and B̂1

have dimensions ρ×m and B2 and B̂2 have dimensions n− ρ×m.

Recall that, by construction, R is spanned by the first ρ columns of the matrix L, and that R is

A-invariant and contains B. This implies that the submatrices Â21 and B̂2 have to be identically

zero, i.e. in the x̂ coordinates the system is described by

σx̂ =

[
σx̂1

σx̂2

]
=

[
Â11 Â12

0 Â22

]
x̂+

[
B̂1

0

]
u, (4.63)

where x̂1 ∈ Rρ and x̂2 ∈ Rn−ρ. The reachability matrix of the system in the x̂ coordinates is

R̂ =

[
B̂1 Â11B̂1 · · · Ân

11B̂1

0 0 0 0

]
,

and, because R = LR̂, it has rank ρ. This implies that the subsystem

σx̂1 = Â11x̂1 + B̂1u (4.64)

11It is always possible to determine such n− ρ vectors. Moreover, it is possible to select them among the vectors ei
of the canonical basis.
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is reachable. The subsystem (4.64) is called the reachable subsystem of the system (4.48), whereas

the subsystem

σx̂2 = Â22x̂2, (4.65)

which is clearly not affected by the input, is called the unreachable subsystem of the system (4.48).

The eigenvalues of the matrix Â22, which are a subset of the eigenvalues of the matrix A, are called

unreachable modes.

4.8 PBH reachability test

The decomposition of a system in reachable and unreachable parts allows us to derive an alternative

test for reachability.

Proposition 4.5 (Popov-Belevich-Hautus (PBH) reachability test). Consider the system (4.48).

The system is reachable if and only if

rank
î
sI −A B

ó
= n

for all s ∈ CI.

Remark. The matrix î
sI −A B

ó
is called the reachability pencil. Note that the rank condition in Proposition 4.5 holds trivially for

all s which are not eigenvalues of A; hence the condition has to be checked only for the n (complex)

numbers which are eigenvalues of A. ⋄

Proof. (Necessity) We prove the necessity by contradiction. Suppose the system is reachable and

that, for some s⋆ ∈ CI,

rank
î
s⋆I −A B

ó
< n.

Then, there is a vector w such that

w′
î
s⋆I −A B

ó
= 0,

hence

w′B = 0 w′A = s⋆w′.

As a result

w′AB = 0 w′A2B = 0 · · · w′An−1B = 0

or, equivalently,

w′R = 0,

which implies that the system is not reachable, hence the contradiction.

(Sufficiency) Again, we prove the statement by contradiction. Suppose

rank
î
sI −A B

ó
= n
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for all s ∈ CI and the system is not reachable. Consider the change of coordinates which transforms

the system into the form (4.63) and note that, for the transformed system, one has12

rank

[
sI − Â11 −Â12 B̂1

0 sI − Â22 0

]
= n.

However, this is not true, as this matrix loses rank for all s which are eigenvalues of Â22, hence the

contradiction. ◁

Remark. The PBH test allows one to compute the unreachable modes of a system without performing

the decomposition into reachable and unreachable parts. In fact, the unreachable modes are all the

complex numbers for which the reachability pencil loses rank. ⋄

12Note that the rank of the reachability pencils of algebraically equivalent systems is the same for all s ∈ CI. This is
a consequence of the identity[

sI − Â B̂
]
=
[

sI − L−1AL L−1B
]
= L−1

[
sI −A B

] ï L 0
0 I

ò
.
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5 Structural Properties - Observability and Reconstructability

5.1 Introduction

In this Chapter we study the state-to-output relation, and we focus on the problem of determining

the state of a system, at a given time instant, from measurements of the input and output signals.

This problem, of great importance in applications, can be addressed from two different perspectives.

In the former, we assume that the state at time t has to be determined on the basis of current and

future measurements. In this case we deal with a so-called observability problem. In the latter, we

assume that the state at time t has to be determined from past and current measurements. In this case

we have a so-called reconstructability problem. Observability problems typically arise in real-time

problems, where one has to determine the state of a system from the actual measurements, whereas

a classical reconstructability problem arises in weather forecast, where one wishes to determine the

current weather from past measurements.

5.2 Observability of discrete-time systems

Consider a linear, time-invariant, discrete-time system. Two states xa and xb are indistinguishable

in the future in k steps if for any input sequence u(0), u(1), . . . , u(k − 1) the corresponding output

sequences ya and yb, coincide for the first k steps, i.e.

ya(t) = yb(t) (5.66)

for all t ∈ [0, k]. By equation (2.31), condition (5.66) is equivalent to

CAtxa = CAtxb (5.67)

for all t ∈ [0, k]. This implies that the property of indistinguishability in the future does not depend

upon the input sequence, i.e. it is a property of the free response of the output of the system, hence

of the matrices A and C. Note, moreover, that condition (5.67) can be rewritten as

xa − xb ∈ kerOk

where

Ok =



C

CA

CA2

...

CAk

 .

We say that two states are indistinguishable in the future if they are indistinguishable in the future

in k steps for all k ≥ 0. Note that, by Cayley-Hamilton Theorem, two states xa and xb are

indistinguishable in the future if

xa − xb ∈ kerOn−1
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Definition 5.1. A state x is not observable in k steps if it is not distinguishable in the future in k

steps from the zero state. It is not observable if it is not observable in k steps for all k.

As a consequence of the above discussion, we conclude that a state x is not observable in k steps if

x ∈ kerOk

and it is not observable if

x ∈ kerOn−1.

Note that the set of non-observable (in k steps) states is a subspace.

Definition 5.2. Consider the discrete-time system (4.48). The subspace kerOn−1 is the unobservable

subspace of the system.

The matrix O = On−1 is the observability matrix of the system.

The system is said to be observable if kerO = {0}.

Remark. The discrete-time system (4.48) is observable if and only if

rankO = n. (5.68)

Equation (5.68) is known as Kalman observability rank condition, and was derived by R.E. Kalman

in the 60’s. ⋄

Remark. The existence of a non-empty unobservable subspace, implies that from current and future

output and input measurements it is not possible to determine the current state. In fact this can be

determined modulo an element in kerO. ⋄

The unobservable subspace kerO has the following important property, the proof of which is a simple

consequence of the definition of the subspace.

Proposition 5.1. The unobservable subspace is contained in the subspace kerC, i.e.

kerC ⊇ kerO,

and it is A-invariant, i.e.

A kerO ⊆ kerO.

We conclude this section noting that algebraically equivalent systems have the same observability

properties. In particular, consider two algebraically equivalent systems, then one of the two systems

is observable if and only if the other is.
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5.3 Reconstructability of discrete-time systems

In this section we study the property of reconstructability. Consider a linear, time-invariant,

discrete-time system, assume that the input sequence u(0), u(1), . . . , u(k − 1) and the output

sequence y(0), y(1), . . . , y(k) are known and consider the problem of determining the state of the

system at time k, i.e. x(k).

Of course, if the system is observable in k steps, then the considered problem is solvable. In fact, the

input and output sequences determine a unique state x(0), from which it is possible to compute x(k).

If the system is not observable in k steps, then the initial state cannot be uniquely determined, but

it can determined modulo an element in the unobservable subspace. This means that, if x(0) is an

initial state which is consistent with the input and output sequences, then all states described by

x̃(0) = x(0) + kerOk

are also consistent with the same input and output sequences.

Consider now the initial state x̃(0) and the resulting state at time k, namely

x̃(k) = Akx(0) +

k−1∑
t=0

Ak−t−1Bu(t) +AkkerOk = x(k) +AkkerOk.

As a result, for given input and output sequences, the state of the system at time k is uniquely defined

if

AkkerOk = {0},

or, equivalently, if

kerOk ⊆ kerAk (5.69)

whereas it is not uniquely defined if the above condition does not hold.

A system is said reconstructable in k steps if condition (5.69) holds. It is said reconstructable if it is

reconstructable in k steps for all k. Recalling that

kerAk = kerAn

for all k ≥ n, a system is reconstructable if and only if

kerO ⊆ kerAn. (5.70)

Note that, the observability rank condition (5.68) implies, but it is not implied, by condition (5.70).

5.4 Computation of the state

The property of observability highlights the ability to determine the state of a system from present and

future measurements. From a practical point of view it is however important not only to characterize

the observability property, but also to have a procedure that allows to effectively compute the unknown
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state.

Consider a linear, time-invariant, discrete-time system, and note that, by equation (2.31), the output

response of the system is a linear combination of the free response and of the forced response. The

latter is known, once the input signal is known, whereas the former depends upon the initial state,

which has to be determined. This means that the problem of determining the initial state of a system

from current and future (input and output) measurements is equivalent to the problem of determining

the initial state of the system from the knowledge of its free output response, i.e. it is possible to

assume, without loss of generality, that the input sequence is identically equal to zero.

To solve this problem note that

Yk =


y(0)

y(1)
...

y(k)

 =


C

CA
...

CAk

x(0) = Okx(0),

with Yk ∈ IRp (k+1). If the system is observable then On−1 = O is full rank, hence the equation

Yn−1 = Ox(0) (5.71)

has the (unique) solution

x(0) = (O′O)−1O′Yn−1, (5.72)

which provides a simple way to compute the state x(0) of the system.

Remark. Equation (5.72) shows how to compute the initial state of a system from current and future

measurements. This information, in turn, can be used to determine the state at time k using equation

(2.30). ⋄

Remark. Measurements are naturally affected by noise, i.e. in practice equation (5.71) has to be

replaced by

Yn−1 + ν = Ox(0),

where ν represents a vector of additive noise affecting the output measurements. (For simplicity we

assume that the input sequence is identically zero.) It is possible to prove that the initial state given

by equation (5.72) yields a free output response which minimizes the norm (energy) of the error

between the actual free output response and the calculated one. ⋄

5.5 Observability and reconstructability for continuous-time systems

The properties of observability and reconstructability for continuous-time systems can be assessed

using the same ideas exploited in the case of discrete-time systems.

Consider a linear, time-invariant, continuous-time system. Two states xa and xb are indistinguishable

in the future over the interval [0, t] if for any input signal u the corresponding output responses coincide
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in the interval [0, t]. This property, recalling equation (2.24), and noting that the forced responses do

not depend upon the initial states, is equivalent to the condition

CeAτxa = CeAτxb,

for all τ ∈ [0, t], or to the condition

CeAτ (xa − xb) = 0, (5.73)

for all τ ∈ [0, t].

The function CeAτ is analytic, hence condition (5.73) is equivalent to

CeAτ (xa − xb)|τ=0 = 0
d

dτ
CeAτ (xa − xb)|τ=0 = 0 · · · di

dτ i
CeAτ (xa − xb)|τ=0 = 0 · · · ,

yielding, by a property of the matrix exponential,

C(xa − xb) = 0 CA(xa − xb) = 0 · · · CAi(xa − xb) = 0 · · · . (5.74)

Note finally that, by Cayley-Hamilton Theorem, (5.74) is equivalent to (recall the definition of the

observability matrix O)

O(xa − xb) = 0. (5.75)

In summary, if two states xa and xb are indistinguishable in the future over the interval [0, t] then

they have to be such that condition (5.75) holds.

Remark. Unlike discrete-time systems, in the continuous-time case if two states are indistinguishabe

in the future over an interval [0, t] then they are indistinguishabe in the future over any interval [0, t̄],

with t̄ > 0. ⋄

From the above discussion, we conclude that, for a continuous-time system, all states which are

indistinguishable in the future from the zero state, i.e. the unobservable states, are those, and only

those, belonging to kerO, as expressed in the following statement.

Proposition 5.2. Consider the continuous-time system (4.48). The following statements are

equivalent.

• The system is observable.

• rankO = n.

• For all t > 0 the observability Gramian

Vt =

∫ t

0

eA
′τC ′CeAτdτ

is positive definite.

Proof. We have only to prove the claim on the observability Gramian. Note first that Vt = V ′
t ≥ 0,

hence we only need to show that rankVt = n, for all t > 0, if and only if the system is observable.
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Suppose the system is observable and rankVt < n, for some t > 0. This implies that there exists a

vector w such that

w′Vtw = 0,

which implies ∫ t

0

w′eA
′τC ′CeAτwdτ = 0

hence ∫ t

0

∥CeAτw∥dτ = 0.

This last equality implies that the function

CeAτw

is identically equal to zero on the interval [0, t]. As a result, by analyticity of the function and a

property of the matrix exponential,

Cw = 0 CAw = 0 · · · CAn−1w = 0,

or equivalently Ow = 0, which contradicts the observability assumption.

Suppose now that Vt > 0 for all t > 0. To show that the system is observable consider the function

δ(t) =

∫ t

0

eA
′τC ′y(τ)dτ

and note that

δ(t) = Vtx(0).

Hence, by positivity of Vt we can uniquely determine x(0) processing future measurements, i.e. the

system is observable. ◁

We conclude this section studying the property of reconstructability for linear, continuous-time

systems. For, note that two states xa and xb are indistinguishable in the past over the interval

[−t, 0] if for any input signal u the corresponding output responses coincide in the interval [−t, 0].

Using arguments similar to the ones used in the case of discrete-time systems, we conclude that all

states are distinguishable in the past, over the interval [−t, 0], from the zero state if

eAt kerO = {0}.

However, because the matrix eAt is invertible for all t, the above condition is equivalent to

kerO = {0},

i.e. a continuous-time system is reconstructable if and only if it is observable.
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5.6 Duality

In the study of the structural properties there is a strong relation between the results on reachability

and observability and the results on controllability and reconstructability. This relation can be defined

formally by introducing the notion of dual system.

Definition 5.3. Consider the system, with state x ∈ X = IRn, input u ∈ IRm, and output y ∈ IRp,

described by the equations

σx = Ax+Bu y = Cx+Du. (5.76)

The system, with state ξ ∈ Ξ = IRn, input v ∈ IRp, and output g ∈ IRm, described by the equations

σξ = A′ξ + C ′v g = B′ξ +D′v (5.77)

is called the dual system of system (5.76), which is called the primal system of system (5.77).

To understand the importance and the usefulness of this notion of duality, let R and O be the

reachability and observability matrix, respectively, of the system (5.76) and let R⋆ and O⋆ be the

reachability and observability matrix, respectively, of the dual system (5.77).

Then, trivially,

R⋆ = O′ O⋆ = R′.

Moreover, for discrete-time systems, the following implications hold

ImAn ⊆ R⇔ (ImAn)⊥ ⊇ R⊥ ⇔ kerAn ⊇ kerR′ = kerO⋆.

As a result, the following statement holds.

Proposition 5.3. Consider the system (5.76) and its dual (5.77).

• System (5.76) is reachable if and only if system (5.77) is observable.

• System (5.76) is observable if and only if system (5.77) is reachable.

• System (5.76) is controllable if and only if system (5.77) is reconstructable.

• System (5.76) is reconstructable if and only if system (5.77) is controllable.

The notion of duality and the above statement allow to derive results similar to those presented in

Sections 4.6, 4.7 and 4.8, but with respect to the observability property.

Proposition 5.4. Consider the system (4.48) with p = 1. Suppose the system is observable. Then

the system is algebraically equivalent to a system of the form

σx̂ = Aox̂+Bou y = Cox̂+Dou (5.78)
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with

A0 =



0 0 · · · 0 0 −α0

1 0 · · · 0 0 −α1

0 1 · · · 0 0 −α2

...
...

. . .
...

...
...

0 0 · · · 1 0 −αn−2

0 0 · · · 0 1 −αn−1


C0 =

î
0 · · · 0 1

ó
.

Note that for any αi, the system (5.78) is observable, hence a system described by the equations

(5.78) is said to be in observability canonical form.

Proposition 5.5. Consider the system (4.48). Suppose the system is not observable. Then the

system is algebraically equivalent to a system of the form

σx̂ =

[
σx̂1

σx̂2

]
=

[
Â11 0

Â21 Â22

]
x̂+

[
B̂1

B̂2

]
u,

y =
î
Ĉ1 0

ó
x̂+ D̂u.

Moreover, the system

σx̂1 = Â11x̂1 + B̂1u y = Ĉ1x̂1 + D̂u (5.79)

is observable.

The subsystem (5.79) is called the observable subsystem of the system (4.48), whereas the subsystem

σx̂2 = Â22x̂2 + B̂2u y = 0, (5.80)

which clearly does not contribute to the output, is called the unobservable subsystem of the system

(4.48). The eigenvalues of the matrix Â22, which are a subset of the eigenvalues of the matrix A, are

called unobservable modes.

Proposition 5.6 (PBH observability test). Consider the system (4.48). The system is observable if

and only if

rank

[
sI −A

C

]
= n

for all s ∈ CI.
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6 Design Tools

6.1 Introduction

In Chapters 4 and 5 we have considered the problem of determining an input signal driving the state

of the system to a given final condition and the problem of determining the state of the system from

measurements of the input and output signals. The proposed solutions rely upon information on

the system over a finite and predetermined time interval and generate the required input signal or

the required state estimate off-line. Typically, the input signal is computed a priori and the state

estimate a posteriori.

This approach is unsatisfactory for various reasons: the effect of disturbances, model errors and

uncertainties is not taken into consideration and the actual evolution of the system is not considered

in the solution of the problems, hence these solutions are open-loop.

This implies that it makes sense to seek methods, to control or estimate the state of the system,

which are based on current information. Such methods provide closed-loop solutions to the considered

problems.

Closed-loop solutions can be constructed in several ways. In the case of linear, finite-dimensional,

time-invariant systems it is natural to solve the above problems considering the interconnection, of

the system to be controlled or of the system the state of which has to be estimated, with another

linear, finite-dimensional, time-invariant system. This system, which has to be designed, processes

the current information and generates the current input to be applied to the system to achieve a

specific goal, or the current estimate of the state of the system.

6.2 The notion of feedback

Consider a linear, finite-dimensional, time-invariant system and the problem of determining an input

signal such that a certain objective is achieved.

Typically, the input signal has to be such that the state of the system has to be driven to zero with a

given speed of convergence (state regulation) or the output of the system has to follow a pre-assigned

reference value (output tracking).

We are interested in determining the input signal in closed-loop form, i.e. the input signal at time

t has to be a function of the available information (state or output) at the same time instant. This

implies that the input signal is generated by means of a feedback mechanism. This mechanism

can be instantaneous, i.e. the input signal is generated instantaneously by processing the available

information. In this case we have a static feedback. Alternatively, the input signal can be generated

processing the available information through a dynamical device. In this case we have a dynamic

feedback.

Assume that the system to be controlled is described by equations of the form

σx = Ax+Bu y = Cx+Du, (6.81)
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with x ∈ X = IRn, u(t) ∈ IRm, y(t) ∈ IRp and A, B, C, and D matrices of appropriate dimensions

and with constant entries. Assume, in addition, that the system which generates the input signal is

linear, finite-dimensional and time-invariant. Then we may have the following four configurations.

• Static output feedback. The input signal is generated via the relation

u = Ky + v, (6.82)

with K a constant matrix of appropriate dimensions and v a new external signal. The resulting

closed-loop system is described by the equations

σx = (A+B(I −KD)−1KC)x+ (I −KD)−1Bv

y = (I +D(I −KD)−1K)Cx+ (I −KD)−1Dv,
(6.83)

which are well-defined provided the matrix I −KD is invertible. Note that this is always the

case if D = 0.

• Static state feedback. The input signal is generated via the relation

u = Kx+ v, (6.84)

with K a constant matrix of appropriate dimensions and v a new external signal. The resulting

closed-loop system is described by the equations

σx = (A+BK)x+Bv

y = (C +DK)x+Dv.
(6.85)

• Dynamic output feedback. The input signal is generated by the system13

σξ = Fξ +Gy u = Kξ + v (6.86)

with F , G and K constant matrices of appropriate dimensions and v a new external signal. The

resulting closed-loop system is described by the equations

σx = Ax+BKξ +Bv

σξ = (F +GDK)ξ +GCx+GDv

y = Cx+DKξ +Dv.

(6.87)

• Dynamic state feedback. The input signal is generated by the system14

σξ = Fξ +Gx u = Kξ + v (6.88)

with F , G and K constant matrices of appropriate dimensions and v a new external signal. The

13We consider the simplest version of dynamic output feedback. A more general form is given by σξ = Fξ+Gy+Hv,
u = Kξ + Jy + Lv.

14We consider the simplest version of dynamic state feedback. A more general form is given by σξ = Fξ+Gx+Hv,
u = Kξ + Jx+ Lv.
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resulting closed-loop system is described by the equations

σx = Ax+BKξ +Bv

σξ = Fξ +Gx

y = Cx+DKξ +Dv.

(6.89)

In what follows we study in detail the static state feedback (Section 6.3) and the dynamic output

feedback (Section 6.6) configurations. This is mainly due to the fact that these two configurations

allow to solve most control problems for linear systems. Moreover, while the use of static output

feedback is very appealing in practice because it results in a simple to implement control strategy,

the study of the properties of system (6.83) as a function of K is very difficult15. Finally, dynamic

state feedback is useful only in very specific problems, such as the so-called noninteracting control

problem with stability16, which are not the subject of these notes.

6.3 State feedback

Consider a system described by the equations (6.81), the state feedback control law (6.84) and the

resulting closed-loop system (6.85).

The use of state feedback modifies the input-to-state interaction, i.e. the system σx = Ax + Bu is

replaced by the system σx = (A+BK)x+Bv. As a result, it makes sense to study which properties

of the system are left unchanged by the application of state feedback (i.e. are feedback invariant) and

which properties can be modified as a function of K.

Proposition 6.1. The system (6.81) is reachable if and only if the system (6.85) is reachable.

Proof. Note that

rank
î
sI −A B

ó
= rank

î
sI −A B

ó[ I 0

−K I

]
= rank

î
sI − (A+BK) B

ó
.

Hence, by Hautus test, the claim holds. ◁

Proposition 6.2. Consider the system (6.81). Suppose the system is not reachable and it is described

by equations of the form (4.63). Then the system (6.85) is described by equations of the same form.

Moreover, the systems (6.81) and (6.85) have the same unreachable modes.

Proof. By assumption, system (6.81) is described by equations of the form

σx =

[
A11 A12

0 A22

]
x+

[
B1

0

]
u.

15In the case m = p = 1 and D = 0 the root locus method can be used to study the eigenvalues of the matrix
A+BKC.

16The noninteracting control problem with stability, in the case m = p > 1, can be informally described as the
problem of designing a system described by equations of the form (6.88) such that the closed-loop system (6.89) is
asymptotically stable and composed of m decoupled systems, e.g. the Markov parameters are diagonal matrices.
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As a result, system (6.85) is described by

σx =

[
A11 +B1K1 A12 +B1K2

0 A22

]
x+

[
B1

0

]
v,

where

K =
î
K1 K2

ó
,

which proves the claim. ◁

This result implies that state feedback does not modify unreachable modes, hence to evaluate the

effect of the feedback on the dynamics of the system it is sufficient to consider only the reachable

subsystem.

We focus initially on single-input reachable systems.

Proposition 6.3. Consider system (6.81). Assume m = 1 (i.e. the system has only one input) and

suppose the system is reachable. Let p(s) be a monic polynomial of degree n. Then there is a (unique)

K such that the characteristic polynomial of A+BK is equal to p(s).

Proof. By reachability of the system it is possible to write the system in reachability canonical form

(see Section 4.6). Let T be the transformation matrix defined in Section 4.6, i.e. let

Ar = TAT−1 Br = TB.

Let

p(s) = sn + α̃n−1s
n−1 + α̃n−2s

n−2 + · · ·+ α̃1s+ α̃0

and define

Kr =
î
α0 − α̃0 α1 − α̃1 · · · αn−1 − α̃n−1

ó
.

Note that

Ar +BrKr =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 0 · · · 1

−α̃0 −α̃1 −α̃2 · · · −α̃n−1

 ,

hence p(s) is the characteristic polynomial of Ar +BrKr. Finally, let

K = KrT

and note that

Ar +BrKr = T (A+BK)T−1,

which shows that p(s) is the characteristic polynomial of A+BK. To prove unicity, let K̂ ̸= K and

define

K̂r = K̂T−1,
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yielding

Ar +BrK̂r ̸= Ar +BrKr,

hence the characteristic polynomial of Ar +BrK̂r is not p(s). ◁

The main disadvantage of the above result is that, to compute the feedback gain K which assigns the

eigenvalues of the closed-loop system, it is necessary to transform the system in reachability canonical

form. This transformation is however not needed, as shown in the following statement.

Proposition 6.4 (Ackermann’s formula). Consider system (6.81). Assume m = 1 (i.e. the system

has only one input) and suppose the system is reachable. Let p(s) be a monic polynomial of degree n.

Then

K = −
î
0 · · · 0 1

ó
R−1p(A)

is such that the characteristic polynomial of A+BK is equal to p(s).

Remark. Propositions 6.3 and 6.4 provide a constructive way to assign the characteristic polynomial,

hence the eigenvalues, of system (6.85). Note that, for low order systems, i.e. if n = 2 or n = 3, it

may be convenient to compute directly the characteristic polynomial of A + BK and then compute

K using the principle of identity of polynomials, i.e. K should be such that the coefficients of the

polynomials det(sI − (A+BK)) and p(s) coincide. ⋄

The result summarized in Proposition 6.3 can be extended to multi-input systems.

Proposition 6.5. Consider system (6.81) and suppose the system is reachable. Let p(s) be a monic

polynomial of degree n. Then there is a K such that the characteristic polynomial of A+BK is equal

to p(s).

Note that in the case m > 1 the feedback gain K assigning the characterisitc polynomial of the matrix

A+BK is not unique. Finally, to compute such feedback gain we may either use the direct approach

discussed in the above Remark or exploit the following fact.

Lemma 6.1 (Heymann). Consider system (6.81) and suppose the system is reachable. Let bi be a

nonzero column of the matrix B. Then there is a matrix G such that the single-input system

σx = (A+BG)x+ biv (6.90)

is reachable.

Exploiting Lemma 6.1 it is possible to design a matrix K such that the characteristic polynomial of

A+BK equals some monic polynomial p(s) of degree n in two steps. First we compute a matrix G

such that the system (6.90) is reachable, and then we use Ackermann’s formula to compute a matrix

k such that the characteristic polynomial of

A+BG+ bik

is p(s).
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We conclude this section noting that the property of reachability implies the existence of a state

feedback gain assigning the eigenvalues of system (6.85). Conversely, it is possible to conclude

reachability of system (6.81) by a property of system (6.85).

Proposition 6.6. System (6.81) is reachable if and only if it is possible to arbitrarily assign the

eigenvalues of A+BK.

6.3.1 Stabilizability

The main goal of a state feedback control law is to render the closed-loop system asymptotically

stable. This goal may be achieved, as discussed in the previous section, if the system is reachable.

However, reachability is not necessary to achieve this goal. In fact, as highlighted in Proposition

6.2, the unreachable modes are not modified by the application of state feedback. This implies that

there exists a matrix K such that system (6.85) is asymptotically stable if and only if the unreachable

modes of system (6.81) have negative real part, in the case of continuous-time systems, or have modulo

smaller than one, in the case of discrete-time systems.

To capture this situation we introduce a new definition.

Definition 6.1 (Stabilizability). System (6.81) is stabilizable if its unreachable modes have negative

real part, in the case of continuous-time systems, or have modulo smaller than one, in the case of

discrete-time systems.

6.4 The notion of filtering

Consider a linear, finite-dimensional, time-invariant system and the problem of estimating its state

from measurements of the input and output signals.

We are interested in determining an on-line estimate, i.e. the estimate at time t has to be a function

of the available information (input and output) at the same time instant. This implies that the

estimate is generated by means of a device (known as filter) processing the current input and output

of the system and generating a state estimate. The filter may be instantaneous, i.e. the estimate

is generated instantaneously by processing the available information. In this case we have a static

filter. Alternatively, the state estimate can be generated processing the available information through

a dynamical device. In this case we have a dynamic filter.

Assume that the system to be controlled is described by equations of the form (6.81) and assume17

that D = 0. Assume, in addition, that the filter which generates the on-line estimate is linear,

finite-dimensional and time-invariant. Then we may have the following two configurations.

• Static filter. The state estimate is generated via the relation

xe =My +Nu, (6.91)

17This assumption is without loss of generality. In fact, if y = Cx + Du and u are measurable then also ỹ = Cx is
measurable.
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with M and N constant matrices of appropriate dimensions. The resulting interconnected

system is described by the equations

σx = Ax+Bu

xe = MCx+Nu.
(6.92)

• Dynamic filter. The state estimate is generated by the system

σξ = Fξ + Ly +Hu xe =Mξ +Ny + Pu (6.93)

with F , L, H, M , N and P constant matrices of appropriate dimensions. The resulting

interconnected system is described by the equations

σx = Ax+Bu

σξ = Fξ + LCx+Hu

xe = Mξ +NCx+ Pu.

(6.94)

In what follows we study in detail the dynamic filter configuration. This is mainly due to the fact that

this configuration allows to solve most estimation problems for linear systems. Moreover, while the

use of a static filter is very appealing, it provides a useful alternative only in very specific situations.

6.5 State observer

A state observer is a filter that allows to estimate, asymptotically or in finite time, the state of a

system from measurements of the input and output signals.

The simplest possible observer can be constructed considering a copy of the system, the state of which

has to be estimated. This means that a candidate observer for system (6.81) is given by

σξ = Aξ +Bu xe = ξ. (6.95)

To assess the properties of this candidate state observer let

e = x− xe

be the estimation error and note that

σe = Ae.

As a result, if e(0) = 0 then e(t) = 0 for all t and for any input signal u. However, if e(0) ̸= 0 then,

for any input signal u, e(t) will be bounded only if the system (6.81) is stable, and will converge to

zero only if the system (6.81) is asymptotically stable. If these conditions do not hold, the estimation

error will not be bounded and system (6.95) does not qualify as a state observer for system (6.81).

The intrinsic limitation of the observer (6.95) is that it does not use all the available information,

i.e. it does not use the knowledge of the output signal y. This observer is therefore an open-loop

observer.
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To exploit the knowledge of y we modify the observer (6.95) adding a term which depends upon the

available information on the estimation error, which is given by

ye = Cxe − y.

This modification yields a candidate state observer described by

σξ = Aξ +Bu+ Lye xe = ξ. (6.96)

To assess the properties of this candidate state observer note that e = x− xe is such that

σe = (A+ LC)e. (6.97)

The matrix L (known as output injection gain) can be used to shape the dynamics of the estimation

error. In particular, we may select L to assign the characteristic polynomical p(s) of A+LC. To this

end, note that

p(s) = det(sI − (A+ LC)) = det(sI − (A′ + C ′L′)).

Hence, there is a matrix L which arbitrarily assigns the characteristic polynomial of A + LC if and

only if the system

σξ = A′ξ + C ′v

is reachable, or equivalently, if and only if the system (6.81) is observable.

We summarize the above discussion with two formal statements.

Proposition 6.7. Consider system (6.81) and suppose the system is observable. Let p(s) be a monic

polynomial of degree n. Then there is18 a matrix L such that the characteristic polynomial of A+LC

is equal to p(s).

Proposition 6.8. System (6.81) is observable if and only if it is possible to arbitrarily assign the

eigenvalues of A+ LC.

6.5.1 Detectability

The main goal of a state observer is to provide an on-line estimate of the state of a system. This

goal may be achieved, as discussed in the previous section, if the system is observable. However,

observability is not necessary to achieve this goal. In fact, similarly to what discussed in Proposition

6.2, the unobservable modes are not modified by the output injection gain. This implies that there

exists a matrix L such that system (6.97) is asymptotically stable if and only if the unobservable

modes of system (6.81) have negative real part, in the case of continuous-time systems, or have

modulo smaller than one, in the case of discrete-time systems.

To capture this situation we introduce a new definition.

Definition 6.2 (Detectability). System (6.81) is detectable if its unobservable modes have negative

real part, in the case of continuous-time systems, or have modulo smaller than one, in the case of

discrete-time systems.
18For single-output systems the matrix L assigning the characteristic polynomial of A+ LC is unique.
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6.5.2 Reduced order observer

We have shown that, under the hypotheses of observability or detectability, it is possible to design an

asymptotic observer of order n for the system (6.81). However, this observer is somewhat over-sized,

i.e. it gives an estimate for the n components of the state vector, without making use of the fact that

some of these components can be directly determined from the output function, e.g. if y = x1 there

is no need to reconstruct x1.

Therefore, it makes sense to design a reduced order observer, i.e. a device that estimates only the part

of the state vector which is not directly attainable from the output. To this end, consider the system

(6.81) with D = 0 and assume that the matrix C has p independent columns19. Then there exists a

matrix Q such that

QC = [I C2] .

Let

v = Qy = QCx = x1 + C2x2,

in which x1 ∈ IRp and x2 ∈ IRn−p denote the first p and the last n − p components of the state x.

Observe that the vector v is measurable.

From the definition of v we conclude that if v and x2 are known then x1 can be easily computed, i.e.

there is no need to construct a dynamic observer for x1.

Define now the new coordinates [
x̂1

x̂2

]
= Tx =

[
I C2

0 I

][
x1

x2

]

and note that, by construction,

v = Qy = x̂1.

In the new coordinates the system, with output v, is described by equations of the form

σx̂1 = Ã11x̂1 + Ã12x̂2 + B̃1u

σx̂2 = Ã21x̂1 + Ã22x̂2 + B̃2u

v = x̂1.

In order to construct an observer for x̂2 consider the system

σξ = Fξ +Hv +Gu,

with state ξ, driven by u and v, and with output

w = ξ + Lv.

The idea is to select the matrices F , H, G and L in such a way that w be an estimate for x̂2. Let

19This is the case if rankC = p, whereas if rankC < p it is always possible to eliminate redundant lines.
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w − x̂2 be the observation error. Then

σw − σx̂2 = Fξ +Hv +Gu+ L

ï
Ã11x̂1 + Ã12x̂2 + B̃1u

ò
−
ï
Ã21x̂1 + Ã22x̂2 + B̃2u

ò
= Fξ +

Å
H + LÃ11 − Ã21

ã
x̂1 +

ï
LÃ12 − Ã22

ò
x̂2 +

ï
G+ LB̃1 − B̃2

ò
u.

(6.98)

To have convergence of the estimation error to zero, regardless of the initial conditions and of the

input signal, we must have

σ(w − x̂2) = F (w − x̂2) (6.99)

and F must have all eigenvalues with negative real part, in the case of continuous-time systems, or

with modulo smaller than one, in the case of discrete-time systems.

Comparing equations (6.98) and (6.99), we obtain that the matrices F , H, G, and L must be such

that
LÃ12 − Ã22 = −F

H + LÃ11 − Ã21 = FL

G+ LB̃1 − B̃2 = 0.

We now show how the previous equations can be solved and how the stability condition of F can be

enforced. Detectability of the system implies that the (reduced system)

σξ̃ = Ã22ξ̃ ỹ = Ã12ξ

is detectable. As a result, there exists a matrix L such that the matrix

F = Ã22 − LÃ12

has all all eigenvalues with negative real part, in the case of continuous-time systems, or with modulo

smaller than one, in the case of discrete-time systems. Then the remaining equations are solved by

H = FL− LÃ11 + Ã21 G = −LB̃1 + B̃2.

Finally, from x̂1 = v and the estimate w of x̂2 we build an estimate xe of the state x inverting the

transformation T , i.e. [
x1e

x2e

]
=

[
I −C2

0 I

][
v

w

]
.

The (conceptual) structure of the reduced order observer is shown in Figure 6.1.

6.6 The separation principle

In Section 6.3 it has been shown that system (6.81) can be stabilized by means of a state feedback

control law, provided the system is stabilizable. Moreover, in Section 6.5 it has been shown that the

state of system (6.81) can be (asymptotically) estimated provided the system is detectable.

It is, therefore, natural to discuss the properties resulting from the use of a state feedback control
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Figure 6.1: A reduced order observer.

law in which the state is replaced by an estimate generated by a state observer.

To this end, consider system (6.81) with D = 0, the state feedback control law

u = Kx+ v,

the state observer

σξ = (A+ LC)ξ +Bu− Ly xe = ξ,

and the control law obtained replacing the state x with its estimate xe, namely

u = Kxe + v.

The overall system is described by equations of the form[
σx

σξ

]
=

[
A BK

−LC A+ LC +BK

][
x

ξ

]
+

[
B

B

]
v

y = Cx.

(6.100)

To study this system, consider the coordinate

e = x− xe

and note that the system can be rewritten in the form[
σx

σe

]
=

[
A+BK −BK

0 A+ LC

][
x

e

]
+

[
B

0

]
v

y = Cx.

(6.101)

From this representation, it is possible to draw the following conclusions.
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The characteristic polynomial of the matrix[
A+BK −BK

0 A+ LC

]

is given by the product of the characteristic polynomials of the matrices A+BK and A+ LC. This

result, known as the separation principle, implies that the designs of the state feedback and of the

state observer can be carried out independently. Therefore, the problem of asymptotic stabilization

of the system (6.81) by means of a dynamic output feedback control law can be solved provided

system (6.81) is stabilizable and detectable. The control law stabilizing the system is described by

the equations

σξ = (A+BK + LC)ξ − Ly u = Kξ + v,

i.e. it is a dynamic output feedback control law.

System (6.101), hence system (6.100), is not reachable. In fact, by Hautus test, we note that the

unreachable modes are all the eigenvalues of A + LC. This implies that the state observer does not

contribute to the input-output behaviour of the closed-loop system, i.e.î
C 0

ó[ A+BK −BK
0 A+ LC

]t [
B

0

]
= C(A+BK)tB,

and, similarly, î
C 0

ó
e

Ö A+BK −BK
0 A+ LC

t
è [

B

0

]
= Ce(A+BK)tB.

Therefore the input-output behaviour of the closed-loop system resulting from the use of an output

feedback controller designed on the basis of the separation principle coincides with the input-output

behaviour of the closed-loop system resulting from the use of the underlying state feedback controller.

6.7 Tracking and regulation

In the previous sections we have considered the simplest possible design problems, namely the

stabilization and observation problems. Practical problems, however, present themselves in a more

complex form. In particular, the system to be controlled may be affected by disturbances, and the

output of the system does not have to be regulated to zero, but should asymptotically track a certain,

prespecified, reference signal.

In this section we discuss this control problem and present possible solutions. To begin with, consider

a system to be controlled described by equations of the form

σx = Ax+Bu+ Pd e = Cx+Qd, (6.102)

with x ∈ X = IRn, u(t) ∈ IRm, e(t) ∈ IRp, d(t) ∈ IRr, and A, B, P , C and Q matrices of appropriate

dimensions and with constant entries.

The signal d(t), denoted exogeneous signal, is in general composed of two components: the former
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models a set of disturbances acting on the system to be controlled, the latter a set of reference

signals. In what follows we assume that the exogeneous signal is generated by a linear system,

denoted exosystem, described by the equation

σd = Sd, (6.103)

with S a matrix with constant entries. Note that, under this assumption, it is possible to generate,

for example, constant or polynomial references/disturbances and sinusoidal references/disturbances

with any given frequency.

The variable e(t), denoted tracking error, is a measure of the error between the ideal behaviour of the

system and the actual behaviour. Ideally, the variable e(t) should be regulated to zero, i.e. should

converge asymptotically to zero, despite the presence of the disturbances. If this happens we say that

the tracking error is regulated to zero, i.e. converges asymptotically to zero, hence the disturbances

are not affecting the asymptotic behaviour of the system and the output Cx(t) is asymptotically

tracking the reference signal −Qd(t).

In general, the tracking error does not naturally converge to zero, hence it is necessary to determine

an input signal u(t) which drives it to zero. The simplest possible way to construct such an input

signal is to assume that it is generated via static feedback of the state x(t) of the system to be

controlled and of the state d(t) of the exosystem, i.e.

u = Kx+ Ld. (6.104)

In practice, it is unrealistic to assume that both x(t) and d(t) are measurable, hence it may be more

natural to assume that the input signal u(t) is generated via dynamic feedback of the error signal

only, i.e. it is generated by the system

σχ = Fχ+Ge u = Hχ, (6.105)

with χ(t) ∈ IRν , for some ν > 0, and F , G and H matrices with constant entries.

In summary, it is possible to formally pose the regulator problem as follows.

Definition 6.3 (Full information regulator problem). Consider the system (6.102), driven by the

exosystem (6.103) and interconnected with the controller (6.104). The full information regulator

problem is the problem of determining the matrices K and L of the controller such that20

(S) the system

σx = (A+BK)x

is asymptotically stable;

(R) all trajectories of the system

σd = Sd σx = (A+BK)x+ (BL+ P )d e = Cx+Qd (6.106)

20(S) stands for stability and (R) for regulation.
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are such that

lim
t→∞

e(t) = 0.

Definition 6.4 (Error feedback regulator problem). Consider the system (6.102), dri-ven by the

exosystem (6.103) and interconnected with the controller (6.105). The error feedback regulator problem

is the problem of determining the matrices F , G and H of the controller such that

(S) the system

σx = Ax+BHχ σχ = Fχ+GCx

is asymptotically stable;

(R) all trajectories of the system

σd = Sd σx = Ax+BHχ+ Pd σχ = Fχ+G(Cx+Qd) e = Cx+Qd (6.107)

are such that

lim
t→∞

e(t) = 0.

6.7.1 The full information regulator problem

Consider the full information regulator problem and assume the following.

Assumption 6.1. The matrix S of the exosystem has all eigenvalues with non-negative real part, in

the case of continuous-time systems, or with modulo not smaller than one, in the case of discrete-time

systems.

Assumption 6.2. The system (6.102) with d = 0 is reachable.

Assumption 6.1 implies that there are no initial conditions d(0) such that the signal d(t) converges

(asymptotically) to zero. This assumption is not restrictive. In fact, disturbances converging to zero

do not have any effect on the asymptotic behaviour of the system, and references which converge to

zero can be tracked simply by driving the state of the system to zero, i.e. by stabilizing the system.

Assumption 6.2 implies that it is possible to arbitrarily assign the eigenvalues of the matrix A+BK

by a proper selection of K. Note that, in practice, this assumption can be replaced by the weaker

assumption that the system (6.102) with d = 0 is stabilizable.

We now present a preliminary result which is instrumental to derive a solution to the full information

regulator problem.

Lemma 6.2. Consider the full information regulator problem. Suppose Assumption 6.1 holds.

Suppose, in addition, that there exists matrices K and L such that condition (S) holds.

Then condition (R) holds if and only if there exists a matrix Π ∈ IRn×r such that the equations

ΠS = (A+BK)Π + (P +BL) 0 = CΠ+Q (6.108)

hold.

AIDAN O. T. HOGG



DESIGN TOOLS 77

Proof. Consider the system (6.106) and the coordinates transformation

d̂ = d x̂ = x−Πd,

where Π is the solution of the equation21

ΠS = (A+BK)Π + (P +BL).

Note that, by condition (S) and Assumption 6.1, there is a unique matrix Π which solves this equation.

In the new coordinates x̂ and d̂ the system is described by the equations

σd̂ = Sd̂ σx̂ = (A+BK)x̂ e = Cx̂+ (CΠ+Q)d̂.

Note now that, by condition (S) limt→∞ x̂ = 0, hence condition (R) holds, by Assumption 6.1, if and

only if

CΠ+Q = 0.

In summary, under the state assumptions, condition (R) holds if and only if there exists a matrix Π

such that equations (6.108) hold. ◁

We are now ready to state and prove the result which provides conditions for the solution of the full

information regulator problem.

Theorem 6.1. Consider the full information regulator problem. Suppose Assumptions 6.1 and 6.2

hold.

There exists a full information control law described by the equation (6.104) which solves the full

information regulator problem if and only if there exist two matrices Π and Γ such that the equations

ΠS = AΠ+BΓ + P 0 = CΠ+Q (6.109)

hold.

Proof. (Necessity) Suppose there exist two matrices K and L such that conditions (S) and (R) of

the full information regulator problem hold. Then, by Lemma 6.2, there exists a matrix Π such that

equations (6.108) hold. As a result, the matrices Π and Γ = KΠ+L are such that equations (6.109)

hold.

(Sufficiency) The proof of the sufficiency is constructive. Suppose there are two matrices Π and Γ

such that equations (6.109) hold. The full information regulator problem is solved selecting K and

L as follows.

21This equation is a so-called Sylvester equation. The Sylvester equation is a (matrix) equation of the form

A1X = XA2 +A3,

in the unknown X. This equation has a unique solution, for any A3, if and only if the matrices A1 and A2 do not have
common eigenvalues.
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The matrix K is any matrix such that the system

σx = (A+BK)x

is asymptotically stable. By Assumption 6.2 such a matrix K does exist.

The matrix L is selected as

L = Γ−KΠ.

This selection is such that condition (S) of the full information regulator problem holds, hence to

complete the proof we have only to show that, with K and L as selected above, the equations (6.108)

hold. This is trivially the case. In fact, replacing L in (6.108) yields the equations (6.109), which

hold by assumption. As a result, also condition (R) of the full information regulator problem holds,

and this completes the proof. ◁

The proof of Theorem 6.1 implies that a controller (it is not the only one) which solves the full

information regulator problem is described by the equation

u = Kx+ (Γ−KΠ)d,

with K such that a stability condition holds, and Π and Γ such that equations (6.109) hold. By

Assumption 6.2 the stability condition can be always satisfied. As a result, the solution of the full

information regulator problem relies upon the existence of a solution of equations (6.109).

6.7.2 The FBI equations

Equations (6.109), known as the Francis-Byrnes-Isidori (FBI) equations, are linear equations in the

unknown Π and Γ, for which the following statement holds.

Lemma 6.3 (Hautus). The equations (6.109), in the unknown Π and Γ, are solvable for any P and

Q if and only if

rank

[
sI −A B

C 0

]
= n+ p, (6.110)

for all s which are eigenvalues of the matrix S.

Remark. The equations (6.109) can be rewritten in compact form as[
A B

C 0

][
Π

Γ

]
−

[
I 0

0 0

][
Π

Γ

]
S =

[
−P
−Q

]
,

which is a so-called generalized Sylvester equation. ⋄

For single-input, single-output systems (i.e. m = p = 1) the condition expressed by Lemma 6.3 has a
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very simple interpretation. In fact, the complex number s such that

rank

[
sI −A B

C 0

]
< n+ 1

are the zeros of the system

σx = Ax+Bu y = Cx,

which coincides with the roots of the numerator polynomial of the transfer function

W (s) = C(sI −A)−1B,

i.e. the zeros of W (s). This implies that, for single-input, single-output systems the full information

regulator problem is solvable if and only if the eigenvalues of the exosystem are not zeros of the

transfer function of the system (6.102), with input u, output e and d = 0.

6.7.3 The error feedback regulator problem

To provide a solution to the error feedback regulator problem we need to introduce a new assumption.

Assumption 6.3. The system[
σx

σd

]
=

[
A P

0 S

][
x

d

]
e =
î
C Q

ó[ x

d

]
(6.111)

is observable.

Note that Assumption 6.3 implies observability of the system

σx = Ax y = Cx. (6.112)

To prove this property note that observability of the system (6.111) implies that

rank


C Q

CA ⋆
...

...

CAn+r−1 ⋆

 = n+ r.

This, in turn, implies

rank


C

CA
...

CAn+r−1

 = n
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and, by Cayley-Hamilton Theorem,

rank


C

CA
...

CAn−1

 = n,

which implies observability of system (6.112). Similarly to what discussed in the case of Assumption

6.2, Assumption 6.3 can be replaced by the weaker assumption that the system (6.111) is detectable.

We are now ready to state and prove the result which provides conditions for the solution of the error

feedback regulator problem.

Theorem 6.2. Consider the error feedback regulator problem. Suppose Assumptions 6.1, 6.2 and 6.3

hold.

There exists an error feedback control law described by the equation (6.105) which solves the full

information regulator problem if and only if there exist two matrices Π and Γ such that the equations

ΠS = AΠ+BΓ + P 0 = CΠ+Q (6.113)

hold.

Remark. Theorem 6.2 can be alternatively stated as follows.

Consider the error feedback regulator problem. Suppose Assumptions 6.1, 6.2 and 6.3 hold. Then

the error feedback regulator problem is solvable if and only if the full information regulator problem

is solvable. ⋄

Proof. (Necessity) The proof of the necessity is similar to the proof of the necessity of Theorem 6.1,

hence omitted.

(Sufficiency) The proof of the sufficiency is constructive. Suppose there are two matrices Π and Γ

such that equations (6.113) hold. Then, by Theorem 6.1 the full information control law

u = Kx+ (Γ−KΠ)d,

with K such that the system σx = (A + BK)x is asymptoticaly stable, solves the full information

regulator problem. This control law is not implementable, because we only measure e. However, by

Assumption 6.3, it is possible to build asymptotic estimates ξ and δ of x and d, hence implement the

control law

u = Kξ + (Γ−KΠ)δ. (6.114)

To this end, consider an observer described by the equation[
σξ

σδ

]
=

[
A P

0 S

][
ξ

δ

]
+

[
G1

G2

](î
C Q

ó[ ξ

δ

]
− e

)
+

[
B

0

] î
K Γ−KΠ

ó[ ξ

δ

]
.
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Note that the estimation errors ex = x− ξ and ed = d− δ are such that[
σex

σed

]
=

([
A P

0 S

]
+

[
G1

G2

] î
C Q

ó)[ ex

ed

]
, (6.115)

hence, by Assumption 6.3, there exist G1 and G2 that assign the eigenvalues of this error system.

Note now that the control law (6.114) can be rewritten as

u = Kx+ (Γ−KΠ)d− (Kex + (Γ−KΠ)ed) ,

hence the control law is composed of the full information control law, which solves the considered

regulator problem, and of an additive disturbance which decays exponentially to zero. Such

a disturbance does not affect the regulation requirement, provided the closed-loop system is

asymptotically stable. Therefore, to complete the proof we need to show that condition (S) holds.

For, note that, in the coordinates x, ex and ed the closed-loop system, with d = 0, is described by

the equations  σx

σex

σed

 =

 A+BK −BK −B(Γ−KΠ)

0 A+G1C P +G1Q

0 G2C S +G2Q


 x

ex

ed

 . (6.116)

Recall that the matrices G1 and G2 have been selected to render system (6.115) asymptotically stable,

and that K is such that the system σx = (A + BK)x is asymptotically stable. As a result, system

(6.116) is asymptotically stable. ◁

6.7.4 The internal model principle

The proof of Theorem 6.2 implies that a controller (it is not the only one) which solves the error

feedback regulator problem is described by equations of the form (6.105) with χ =
î
ξ δ

ó′
,

F =

[
A+G1C +BK P +G1Q+B(Γ−KΠ)

G2C S +G2Q

]
,

G =

[
G1

G2

]
, H =

î
K Γ−KΠ

ó
,

(6.117)

K, G1 and G2 such that a stability condition holds, and Π and Γ such that equations (6.113) hold.

This controller, and in particular the matrix F , possesses a very interesting property.

Proposition 6.9 (Internal model property). The matrix F in equation (6.117) is such that

FΣ = ΣS,

for some matrix Σ of rank r. In particular, any eigenvalue of S is also an eigevalue of F .

Proof. Let

Σ =

[
Π

I

]
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and note that rankΣ = r, by construction, and that

FΣ =

[
AΠ+G1CΠ+BKΠ+ P +G1Q+B(Γ−KΠ)

−G2CΠ+ S −G2Q

]

=

[
(AΠ+BΓ + P ) +G1(CΠ+Q)

S −G2(CΠ+Q)

]
=

[
ΠS

S

]
= ΣS,

hence the first claim. To prove the second claim, let λ be an eigenvalue of S and v the corresponding

eigenvector. Then Sv = λv, hence

FΣv = ΣSv = λΣv,

which shows that λ is an eigenvalue of F with eigenvector Σv, and this proves the second claim. ◁

It is possible to prove that the property highlighted in Proposition 6.9 is shared by all error feedback

control laws which solve the considered regulation problem, and not only the proposed controller.

This property, which is often referred to as the internal model principle, can be interpreted as follows.

The control law solving the regulator problem has to contain a copy of the exosystem, i.e. it has to

be able to generate, when e = 0, a copy of the exogeneous signal.
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