Week 6 Tutorial

Question 1. Consider the discrete-time system x[k+1] = Ax[k] + Bu[k]. Let

	0	1	0]		1	
A =	-1	0	0	B =	-1	
	0	2	0		2	

- (a) Compute the reachability matrix R.
- (b) Determine if the system is reachable and compute the set of reachable states.
- (c) Determine all states x_I such that $x[0] = x_I$ and x[1] = 0.

Question 2. Consider the continuous-time system $\dot{x} = Ax + Bu$. Let

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \qquad \qquad B = \left[\begin{array}{c} 1 \\ 0 \end{array} \right].$$

- (a) Compute the reachability matrix R.
- (b) Determine if the system is reachable.
- (c) Compute the set of states that can be reached from the state, $x(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Question 3. Consider the discrete-time system x[k+1] = Ax[k] + Bu[k]. Let

$$A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}.$$

- (a) Compute the reachability matrix R.
- (b) Determine if the system is reachable.
- (c) Compute the reachable subspaces in one step, two steps and three steps.