Week 3 Tutorial

Question 1. Consider a linear continuous-time system described by the equations

$$\dot{x}_1(t) = x_1(t) + \alpha x_2 + u(t)$$
$$\dot{x}_2(t) = x_1(t) + x_2(t) - \alpha x_2(t)$$
$$y(t) = x_1(t)$$

with $\alpha \in \mathbb{R}$ and constant, $x(t) = [x_1(t), x_2(t)]^T \in \mathbb{R}^2$ and $u(t) \in \mathbb{R}$.

- 1. Let u(t) = 0, for all $t \ge 0$. Compute the equilibrium points of the system as a function of α .
- 2. Assume now u(t) = u(0), for all $t \ge 0$, where $u(t) \ne 0$. Compute the equilibrium points of the system as a function of α .
- 3. Discuss similarities and differences between the results in part (a) and part (b).

Question 2. An ideal op-amp circuit is given in Figure 1

where i(t) is the current, $v_1(t)$ is the input and $v_2(t)$ is the output.

- 1. Derive the state space model for the circuit in Figure 1 using the state variables $x_1 = i(t)$ and $x_2 = v_2(t)$.
- 2. Using your answer from part 1, obtain the transfer function G(s) of the circuit in Figure 1.
- 3. Find the state transition matrix e^{At} such that $\mathbf{x}(t) = e^{At}\mathbf{x}(0)$.
- 4. Find the equilibrium point of the circuit in Figure 1.