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Week 2 Tutorial

Question 1. Consider the translational mechanical system shown in Figure 1, where y1(t) and y2(t)

denote the displacements of the associated masses from their static equilibrium positions, and f(t)

represents a force applied to the first mass m1.

Figure 1: Translational mechanical system.

The system’s parameters are the masses m1 and m2, viscous damping coefficient c, and spring

stiffnesses k1 and k2. The input is the applied force u(t) = f(t), and the outputs are taken as

the mass displacements.

Derive a valid state-space realization for the mechanical system. That is, specify the state variables

and derive the coefficient matrices A, B, C, and D.

Solution 1.

1. Newton’s second law applied to each mass yields:

m1ÿ1(t) + k1y1(t)− k2[y2(t)− y1(t)] = f(t),

m2ÿ2(t) + cẏ2(t) + k2[y2(t)− y1(t)] = 0.

Define the state variables:

x1(t) = y1(t), x2(t) = y2(t)− y1(t), x3(t) = ẏ1(t), x4(t) = ẏ2(t).

The state-space representation is:

ẋ(t) =


0 0 1 0

0 0 −1 1

− k1

m1

k2

m1
0 0

0 − k2

m2
0 − c

m2

x(t) +


0

0
1

m1

0

u(t),

y(t) =

[
1 0 0 0

1 1 0 0

]
x(t) +

[
0

0

]
u(t).
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Question 2. Consider the electrical network shown in Figure 2. The two inputs are the independent

voltage and current sources vin(t) and iin(t), and the single output is the inductor voltage vL(t).

Figure 2: Electrical Circuit.

Using clockwise circulating mesh currents i1(t), i2(t), and i3(t), Kirchhoff’s voltage and current laws

yield:

R1i1(t) + vC1
(t) + L

d

dt
[i1(t)− i2(t)] = vin(t),

L
d

dt
[i2(t)− i1(t)] + vC2(t) +R2[i2(t)− i3(t)] = 0,

i3(t) = −iin(t),

iL(t) = i1(t)− i2(t).

Derive a valid state-space realization for the electrical network. That is, specify the state variables

and derive the coefficient matrices A, B, C, and D.

Solution 2.

1. Define the state variables:

x1(t) = vC1
(t), x2(t) = vC2

(t), x3(t) = iL(t),

and inputs:

u1(t) = vin(t), u2(t) = iin(t).

2. State equations:

ẋ1(t)

ẋ2(t)

ẋ3(t)

 =


1

(R1+R2)C1
− 1

(R1+R2)C1

R2

(R1+R2)C1

− 1
(R1+R2)C2

− 1
(R1+R2)C2

− R1

(R1+R2)C2

− R2

(R1+R2)L
R1

(R1+R2)L
− R1R2

(R1+R2)L


x1(t)

x2(t)

x3(t)

+


1
(R1+R2)C1

− R2

(R1+R2)C1

1
(R1+R2)C2

− R2

(R1+R2)C2

R2

(R1+R2)L
R1R2

(R1+R2)L


[
u1(t)

u2(t)

]
.

3. Output equation:

y(t) =
î
− R2

(R1+R2)
R1

(R1+R2)
− R1R2

(R1+R2)

óx1(t)

x2(t)

x3(t)

+
î

R2

(R1+R2)
R1R2

(R1+R2)

ó[u1(t)

u2(t)

]
.
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Question 3. Consider the matrix

A =

2 0 0

1 1 0

0 0 3

 .

1. Compute the characteristic polynomial of A and find the eigenvalues of A.

2. Compute three linearly independent eigenvectors for A.

3. Find a similarity transformation L such that Â = L−1AL is a diagonal matrix.

4. Compute eAt as a function of t.

5. Compute sin(At) as a function of t.

Solution 3.

1. Compute the characteristic polynomial:

det(sI −A) = det

s− 2 0 0

−1 s− 1 0

0 0 s− 3

 .

Expanding along the third row:

det(sI −A) = (s− 3)× det

[
s− 2 0

−1 s− 1

]
.

Compute the determinant of the 2× 2 matrix:

det

[
s− 2 0

−1 s− 1

]
= (s− 2)(s− 1)− 0 = s2 − 3s+ 2

Thus:

det(sI −A) = (s− 3)(s2 − 3s+ 2).

Factorizing:

det(sI −A) = (s− 3)(s− 2)(s− 1).

Hence, the eigenvalues are λ = 3, 2, 1.

2. Solve Av = λv for each eigenvalue λ:

For λ = 3:

(A− 3I)v = 0 =⇒

−1 0 0

1 −2 0

0 0 0

 v = 0.

A solution is v1 = [0, 0, 1]⊤.
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For λ = 2:

(A− 2I)v = 0 =⇒

0 0 0

1 −1 0

0 0 1

 v = 0.

A solution is v2 = [1, 1, 0]⊤.

For λ = 1:

(A− I)v = 0 =⇒

1 0 0

1 0 0

0 0 2

 v = 0.

A solution is v3 = [0, 1, 0]⊤.

3. Let M = [v1, v2, v3] be the matrix of eigenvectors:

M =

0 1 0

0 1 1

1 0 0

 .

Note that

AM = MΛ, =⇒ A = MΛM−1,

hence, L = M and Â = Λ where

Â = Λ =

3 0 0

0 2 0

0 0 1

 .

4. Compute eAt:

eAt = MeÂtM−1,

where

eÂt =

e3t 0 0

0 e2t 0

0 0 et

 .

To compute M−1, first find the determinant of M :

det(M) =

∣∣∣∣∣∣∣
0 1 0

0 1 1

1 0 0

∣∣∣∣∣∣∣ = 0 ·

∣∣∣∣∣1 1

0 0

∣∣∣∣∣− 1 ·

∣∣∣∣∣0 1

1 0

∣∣∣∣∣+ 0 ·

∣∣∣∣∣0 1

1 0

∣∣∣∣∣ .
det(M) = 0− 1(−1) + 0 = 1.

Since det(M) = 1, the cofactor matrix is:

Cofactor matrix = adj(M) =

0 1 −1

0 0 1

1 0 0

 .
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Thus the inverse matrix is:

M−1 = adj(M) =

 0 0 1

1 0 0

−1 1 0

 .

Now compute MeÂt:

MeÂt =

0 1 0

0 1 1

1 0 0


e3t 0 0

0 e2t 0

0 0 et

 =

 0 e2t 0

0 e2t et

e3t 0 0

 .

Finally:

eAt = MeÂtM−1 =

 0 e2t 0

0 e2t et

e3t 0 0


 0 0 1

1 0 0

−1 1 0

 =

 e2t 0 0

e2t − et et 0

0 0 e3t

 .

5. Compute sin(At):

sin(At) = M sin(Ât)M−1,

where

sin(Ât) =

sin(3t) 0 0

0 sin(2t) 0

0 0 sin(t)

 .

Now compute M sin(Ât):

M sin(Ât) =

0 1 0

0 1 1

1 0 0


sin(3t) 0 0

0 sin(2t) 0

0 0 sin(t)

 =

 0 sin(2t) 0

0 sin(2t) sin(t)

sin(3t) 0 0


Finally:

eAt = M sin(Ât)M−1 =

 0 sin(2t) 0

0 sin(2t) sin(t)

sin(3t) 0 0


 0 0 1

1 0 0

−1 1 0

 =

 sin(2t) 0 0

sin(2t)− sin(t) sin(t) 0

0 0 sin(3t)

 .
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