
1

Tutorial Problem Sheet 2

Question 1. An ideal op-amp circuit is given in Figure 1
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Figure 1

where i(t) is the current, v1(t) is the input and v2(t) is the output.

(a) Derive the state space model for the circuit in Figure 1 using the state variables x1 = i(t) and

x2 = v2(t).

(b) Using your answer from part (a), obtain the transfer function G(s) of the circuit in Figure 1.

(c) Find the state transition matrix eAt such that x(t) = eAtx(0).

(d) Find the equilibrium point of the circuit in Figure 1.

Solution 1.

(a) First define v1 and v2

v1 = vL

v1 = L
diL
dt

= L
di

dt
∴

di

dt
=

v1
L

v2 = vC =
1

C

∫
iCdt ∴

dv2
dt

=
iC
C

= − i

C

Define the derivatives of the state variable ẋ1 and ẋ2

x1 = i

ẋ1 =
di

dt
=

v1
L

x2 = v2

ẋ2 =
dv2
dt

= − i

C
= − 1

C
x1

Define the input u and output y

y = v2 = x2

u = v1 ∴ ẋ1 =
v1
L

=
1

L
u

AIDAN O. T. HOGG



2

Therefore, the state space model is

A =

[
0 0

− 1
C 0

]
, B =

[
1
L

0

]
, C =

î
0 1

ó
, D = 0 .

(b) The transfer function is

G(s) = C(sI−A)−1B+D

where

A =

[
0 0

− 1
C 0

]
, B =

[
1
L

0

]
, C =

î
0 1

ó
, D = 0 .

Therefore

G(s) =
î
0 1

ó[ s 0
1
C s

]−1 [
1
L

0

]
+ 0

=
î
0 1

ó[ 1
s 0

− 1
Cs2

1
s

][
1
L

0

]
=
î
0 1
ó[ 1

Ls

− 1
LCs2

]

= − 1

LCs2

Note that you get the same answer using the impedances of the components in the Laplace

domain.

T (s) =
V2(s)

V1(s)
= −Z2

Z1
= −1/Cs

Ls
= − 1

LCs2

which you would have learnt in your previous module on classical control.

(c) Method 1

Recall the definition of eAt.

eAt = I +At+
A2t2

2!
+

A3t3

3!
+ · · ·

First, calculate

A2 =

[
0 0

− 1
C 0

][
0 0

− 1
C 0

]
=

[
0 0

0 0

]
Therefore A3 = 0, A4 = 0, and so on.

eAt = I +At =

[
1 0

0 1

]
=

[
0 0

− 1
C 0

]
t =

[
1 0

− 1
C 1

]

Method 2

We find eAt by integrating both ẋ1(t) and ẋ2(t)

ẋ1(t) = 0

∴ x1(t) = x1(0)

ẋ2(t) = − 1

C
x1(t)

∴ x2(t) = − t

C
x1(0) + x2(0)
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x(t) = eAtx(0) ∴ eAt =

[
1 0

− t
C 1

]
1

Method 3

An alternative way to find eAt, which is not covered in this module, is to use the formula

eAt = L −1{[sI −A]−1}

eAt = L −1

{[
s 0
1
C s

]−1 }
= L −1

{[
1
s 0

− 1
Cs2

1
s

]}
=

[
1 0

− t
C 1

]

(d) To begin with, note that det(A) = 0 meaning the matrix A is not invertible. Therefore, to find

the equilibrium points, we need to solve the equations ẋ1(t) = ẋ2(t) = 0, that is

ẋ1(t) =
1

L
u = 0 ∴ u = 0 and ẋ2(t) = − 1

C
x1(t) = 0 ∴ x1(t) = 0

This means that all equilibrium points described by

x(t) = x(0) = δ

[
0

1

]
⇐⇒ u(t) = 0

where δ can be any number. Thus, when u(t) = u(0) = 0, the system has infinitely many

equilibrium points on a straight line, and when u(t) = u(0) ̸= 0, the system has no equilibria.

Question 2. Consider the discrete-time linear system

x[k + 1] = Ax[k] +Bu[k],

y[k] = Cx[k],

where

A =

[
1 0

−T
C 1

]
, B =

[
T
L

0

]
, C =

î
0 1
ó
,

and T > 0 is the sampling period.

(a) Show that the discrete-time state matrix A corresponds to the continuous-time system studied

in Question 1.

(b) Compute Ak for all k ≥ 0.

(c) Hence, derive an explicit expression for the state trajectory x[k] in terms of the initial condition

x[0] and the input sequence {u[0], u[1], . . . , u[k − 1]}.

(d) Assume u[k] = 0 for all k. Describe the free response of the system.

(e) Determine all equilibrium points of the discrete-time system and compare them with the

equilibrium points of the continuous-time model.
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Solution 2.

(a) For a continuous-time linear system

ẋ(t) = Ax(t),

the state trajectory is given by

x(t) = eAtx(0),

where the matrix exponential eAt is defined by the power series

eAt = I +At+
A2t2

2!
+

A3t3

3!
+ · · · .

In a discrete-time setting, the state is observed at sampling instants t = kT . The state transition

over one sampling interval of length T is therefore

x((k + 1)T ) = eATx(kT ).

This shows that the discrete-time state transition matrix is given by

Ad = eAT .

For the system considered here,

A =

[
0 0

− 1
C 0

]
.

A direct computation gives

A2 =

[
0 0

− 1
C 0

]2

=

[
0 0

0 0

]
= 0.

Since all higher powers of A are also zero, the series defining the matrix exponential terminates

after the linear term:

eAT = I +AT.

Hence,

eAT =

[
1 0

0 1

]
+ T

[
0 0

− 1
C 0

]
=

[
1 0

−T
C 1

]
.

This explains why the discrete-time state matrix A appearing in this problem has the form

I+AT . Such a structure is directly analogous to the continuous-time system studied previously,

where ẋ2 depends linearly on x1 while ẋ1 does not depend on the state.

(b) Method 1

A =

[
1 0

−T
C 1

]
.

Compute successive powers:
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A2 = AA =

[
1 0

−T
C 1

][
1 0

−T
C 1

]
=

[
1 0

− 2T
C 1

]
.

A3 = A2A =

[
1 0

− 2T
C 1

][
1 0

−T
C 1

]
=

[
1 0

− 3T
C 1

]
.

A4 = A3A =

[
1 0

− 3T
C 1

][
1 0

−T
C 1

]
=

[
1 0

− 4T
C 1

]
.

We observe the pattern: each multiplication byA leaves the diagonal entries equal to 1, keeps the

upper-right entry equal to 0, and subtracts an additional −T
C in the lower-left entry. Therefore,

after k multiplications,

Ak =

[
1 0

−kT
C 1

]
, k ≥ 0.

Method 2

Since

N2 =

[
0 0

−T
C 0

]2

=

[
0 0

0 0

]
,

where the matrix N is nilpotent. Therefore, using the binomial expansion,

Ak = (I +N)k = I + kN.

Hence

Ak =

[
1 0

−kT
C 1

]
, k ≥ 0.

(c) From the general discrete-time solution formula,

x[k] = Akx[0] +

k−1∑
i=0

Ak−1−iBu[i].

Using the result from part (b),

Ak−1−i =

[
1 0

− (k−1−i)T
C 1

]
, B =

[
T
L

0

]
.

Thus,

Ak−1−iB =

 T
L

− (k−1−i)T 2

LC

 .

Therefore,

x[k] =

[
1 0

−kT
C 1

]
x[0] +

k−1∑
i=0

 T
L

− (k−1−i)T 2

LC

u[i].
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(d) For u[k] = 0 for all k,

x[k] = Akx[0].

Hence,

x1[k] = x1[0], x2[k] = x2[0]−
kT

C
x1[0].

Unless x1[0] = 0, the second state grows linearly with k.

(e) An equilibrium (xe, ue) satisfies

xe = Axe +Bue.

This gives

(I −A)xe = Bue.

Then

(I −A)xe =

[
0 0
T
C 0

][
x1,e

x2,e

]
=

[
0

T
Cx1,e

]
.

Similarly,

Bue =

[
T
Lue

0

]
.

Equating the two sides gives the system of equations

0 =
T

L
ue,

T

C
x1,e = 0.

Since T > 0, L > 0, and C > 0, these reduce to

ue = 0, x1,e = 0.

Equating both sides yields

ue = 0, x1,e = 0,

with no restriction on x2,e. Hence, the equilibrium set is

ue = 0, xe = δ

[
0

1

]
, δ ∈ R.

These equilibria are directly analogous to those of the continuous-time system: When the input

is zero, there are infinitely many equilibrium points lying on a line in the state space.
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