

Tutorial Problem Sheet 2

Question 1. An ideal op-amp circuit is given in Figure 1

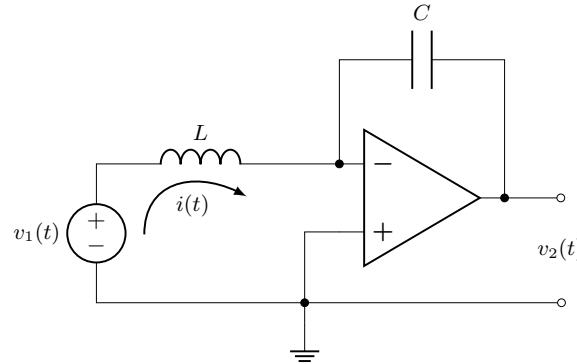


Figure 1

where $i(t)$ is the current, $v_1(t)$ is the input and $v_2(t)$ is the output.

- Derive the state space model for the circuit in Figure 1 using the state variables $x_1 = i(t)$ and $x_2 = v_2(t)$.
- Using your answer from part (a), obtain the transfer function $G(s)$ of the circuit in Figure 1.
- Find the state transition matrix e^{At} such that $\mathbf{x}(t) = e^{At}\mathbf{x}(0)$.
- Find the equilibrium point of the circuit in Figure 1.

Question 2. Consider the discrete-time linear system

$$\begin{aligned}\mathbf{x}[k+1] &= \mathbf{A}\mathbf{x}[k] + \mathbf{B}u[k], \\ y[k] &= \mathbf{C}\mathbf{x}[k],\end{aligned}$$

where

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ -\frac{T}{C} & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \frac{T}{L} \\ 0 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 0 & 1 \end{bmatrix},$$

and $T > 0$ is the sampling period.

- Show that the discrete-time state matrix \mathbf{A} corresponds to the continuous-time system studied in Question 1.
- Compute \mathbf{A}^k for all $k \geq 0$.
- Hence, derive an explicit expression for the state trajectory $\mathbf{x}[k]$ in terms of the initial condition $\mathbf{x}[0]$ and the input sequence $\{u[0], u[1], \dots, u[k-1]\}$.
- Assume $u[k] = 0$ for all k . Describe the free response of the system.
- Determine all equilibrium points of the discrete-time system and compare them with the equilibrium points of the continuous-time model.