Tutorial Problem Sheet 1

Question 1. Consider the translational mechanical system shown in Figure 1, where yy(t) and yo(t)
denote the displacements of the associated masses from their static equilibrium positions, and f(t)

represents a force applied to the first mass m;.

}—> 1@ }—» y2(0)

’—> o)

kg ky c

m o FWW— m ]

Figure 1: Translational mechanical system.

The system’s parameters are the masses m1 and mso, the viscous damping coefficient ¢, and the spring
stiffnesses ki and ko. The input is the applied force u(t) = f(t), and the outputs are taken as the

mass displacements.

Derive a valid state-space realisation for the mechanical system. That is, specify the state variables

and derive the coefficient matrices A, B, C, and D.

Solution 1.
(a) Newton’s second law applied to each mass yields:
ma i (t) + kayi (8) — kalya(t) — v1(8)] = f(2),

mafia(t) + cga(t) + k2lya(t) — 41 (1)] = 0.

Define the state variables:
ri(t) =y1(t), @2(t) = yolt) —y1(t), w3(t) =v1(t), xa(t) = Pa(?).

The state-space representation is:

0 0 1 0 0
. 0 0 —1 1 0
x(t) = ot ko 0 x(t)+ | | | u),
T my mTé my
0 -m 0 -
1 0 0 O 0
t) = x(t) + u(t
y(t) L Lo 0} (t) 0 (t)
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Question 2. Consider the electrical network shown in Figure 2. The two inputs are the independent

voltage and current sources vi,(t) and i;,(t), and the single output is the inductor voltage vy, (t).
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Figure 2: Electrical Circuit.

Using clockwise circulating mesh currents i1(t), i2(t), and i3(t), Kirchhoff’s voltage and current laws
yield:
. d .. .
Riia(t) + vey (1) + L [ia (t) — i2(8)] = vin(2),

d

L%[iz(t) —i1(t)] +ve, (t) + Ralia(t) —i3(t)] = 0,

i3(t) = —im(t),  ir(t) =i1(t) — ia(t).

Derive a valid state-space realisation for the electrical network. That is, specify the state variables
and derive the coefficient matrices A, B, C, and D.

Solution 2.

(a) Define the state variables:
w1 (t) = ve, (1), w2(t) = ve, (), ws(t) =ir(t).

The inputs:

and the outputs:

Using the relationship
. d .. )
Ryia(t) +vey () + Lo [ () — i2(8)] = vin(2),
can be written as

R101l"1(t) + Ljig,(t) = —$1(t> + ul(t) . (2.1)

Then using
L2 ia(t) — in(8)) + ve (1) + Bolia(t) — is(1)] =0,
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can be written as
RoCoio(t) — Lis(t)

Finally, using the fact that

Crin(t) = ir (1), Coia(t) = in(t) |
— Ig(t) = Oll‘l(t) — Cglig(t) N

we can write

Cl.’tl(t) — CQ(L'Q(t) = xg(t) .

= 71’2@) - R2u2(t) .

(2.3)

Packaging equations (2.1), (2.2) and (2.3) in matrix form and isolating the state-variable time

derivatives gives

RlCl 0 L i‘l(t) -1 0 0 J?l(t) 0 (t)
u
0 RQCQ —L Cbg(t) - 0 -1 0 wg(t) + (0 —R2 l(t)‘| 5
u
C, —Cy 0] lis) 0 0 1] =300 0 0 2
and therefore
-1 _
.’i,‘l(t) R101 0 L -1 0 0 X1 (t) 0 (t)
U
:tg(t) = 0 RsCy —L -1 0 132(15) + (0 —Rs 1(t)‘| s
n
i3 (1) . —Cy, 0 0 0 1] |as(t) 0 0 ?
where
r 1 1 Ry
R,C, 0 L -1 Ci1(R1+Rz) Ci(Ri1+R2) Ci(Ri+R2)
_ 1 1 —R
0 RyCy L T | C2(R1+R2)  Ca2(Ri+R2) CQ(Rl'iRQ)
G —Cy 0 Ry —Ry —RiRy
L L(R1+R2) L(R1+R2) L(R1+R2)
Multiplying through by the inverse yields the state equations:
B 1 _ 1 Ry
Ci(R1+R Ci(R1+R Ci(R1+R 1 R
l‘l(t) 1(R1+R2) (R1+R2) 1(R1+R2) ajl(t) C1(R1+R2) _C1(R12+R2) (t
)| = |- ot o - 22(t) |+ | oot — o “
2 C2(R1+R2) Ca2(R1+R2) Ca(R1+Rz2) 2 C2(R1+R2) Ca(R1+Rz2) u (t)
#3(1) 0 By £ Ry ?
3 I R, __RiRy 3 L(Ri+Rs)  L(Ri+Rs)
L(R1+R>) L(R1+R>) L(R1+R>2)
and the output equation:
l‘l(t) w (t)
_ R R RiR R RiR
y(t) - |:_ (R1+2R2) (Rl+1R2) _(thrlsz)} $2(t) + |:(R1+2R2) (R11+1%2):| L@(t)] :
z3(t)

AIDAN O. T. HOGG

)17



Question 3. Consider the matriz

o = O
w O O

(a) Compute the characteristic polynomial of A and find the eigenvalues of A.

(b) Compute three linearly independent eigenvectors for A.

(c) Find a similarity transformation L such that A=L"'AL is a diagonal matrix.
(d) Compute et as a function of t.

(e) Compute sin(At) as a function of t.
Solution 3.

(a) Compute the characteristic polynomial:
det(sI —A)=det | -1 s—1
Expanding along the third row:

det(sI — A) = (s — 3) x det [SQ 0 ]
-1 s—1

Compute the determinant of the 2 x 2 matrix:

-2 0
det |” =(5-2)(s—1)—0=2s*—35+2
-1 s-1

Thus:
det(sI — A) = (s — 3)(s* — 35 + 2).

Factorizing:
det(sI — A) = (s —3)(s —2)(s — 1).

Hence, the eigenvalues are A = 3,2, 1.

(b) Solve Av = Av for each eigenvalue A:

For A = 3:
-1 0 0
(A-3Ijw=0 = |1 -2 0|v=0.
0 0 0
A solution is vy = [0,0,1] .
For A\ = 2:
0 0 O
(A—2l)v=0 = |1 —1 0|v=0.
0 0 1

AIDAN O. T. HOGG



A solution is ve = [1,1,0] .
For A =1:

—
h
|
~
S~—
S
Il
(=)
S = =
o O O
N O O
4
I
o

A solution is v3 = [0,1,0] .

Let M = [v1, v, v3] be the matrix of eigenvectors:

=

Il
_ o O
S = =
o = O

Note that
AM = MA, = A= MAM™!,

hence, L = M and A = A where

b
I
=
I
S O W
S N O
—= o O

Compute e
et = MMM,

where
et 0 0
et=10 e 0
0 0 €

To compute M1, first find the determinant of M:

010 1 1 0 1 0 1
det(M)=10 1 1]=0- -1 +0- .
0 0 1 0 1 0
1 0 0
det(M)=0—-1(-1)+0=1.
Since det(M) = 1, the cofactor matrix is:
0 1 -1
Cofactor matrix = cof(M) = |0 1
1 0 0
Thus the inverse matrix is:
1 1 0 0 1
M—l _ f T _ (M) =
detan) M) = qaandh 11 2 g
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Now compute MeAt:

0 1 0] [e* 0 o0 20
Me =10 1 0 e o0f= et et
1 0 0/ L0 0 ¢ e300
Finally:
0 e* 0 0 0 1 e?t 0
eM=MeMM T =0 € | |1 0 0] =|e—¢ ¢
e 0 0] |-1 1 0 0 0 et
(e) Compute sin(At):
sin(At) = M sin(At)M 1,
where
sin(3t) 0 0
sin(At) = 0 sin(2t) 0
0 0 sin(t)
Now compute M sin(At):
0 1 0] [sin(3?) 0 0 0 sin(2t) 0
Msin(At) = [0 1 0 sin(2t) 0 | =| 0 sin(2) sin(t)
100 0 0 sin(t) sin(3t) 0 0
Finally:
0 sin(2t) 0 0 0 1 sin(2t) 0 0
et = Msin(A)M—'=| 0 sin(2t) sin(¢)| | 1 0 0| = [sin(2t) —sin(¢) sin(¢) 0
sin(3t) 0 0 -1 10 0 0  sin(3t)

with a € R and constant, x(t) = [z1(t), 72(t)]T € R? and u(t) € R.

(a) Let u(t) =0, for allt > 0. Compute the equilibrium points of the system as a function of a.

(b) Assume now u(t) = u(0), for all t > 0, where u(t) # 0. Compute the equilibrium points of the

system as a function of a.

(c) Discuss similarities and differences between the results in part (a) and part (b).

Solution 4.
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(a)

To begin with, note that

A:l o 7le
1 1—« 0

and that det(A) = 1 —2a. If 1 — 2« # 0, the matrix A is invertible. Hence the only equilibrium

. =] o,

for u(t) = u(0) =0 is z(0) = —A"'Bu(0) = 0 for all t > 0. If @ = 1/2 and det(A) = 0, then to

find the equilibrium points, we need to solve the equations #;(t) = &2(t) = 0 for u(t) = 0, that
is
1 1 1
0=uxz(t) + ixQ(t) 0=a1(t) + z2(t) — ixg(t) =x1(t) + ixg(t)

This means that all equilibrium points described by

1
#(t) = (0) = § H ,

where § can be any number. Thus, when o = 1/2 and u(t) = u(0) = 0, the system has infinitely

many equilibrium points on a straight line.

As for part (a), if 1 — 2« # 0, the matrix A is invertible hence the only equilibrium for u(t) =
u(0) # 0is 2(0) = —A~1Bu(0) = 0 for all t > 0. That is

2(0) = u(0) |l-a -« " I u(0) |[1-« or u(0) |a—1
1—2a | —1 1 0 1—-2a | —1 20— 1 1
If @« = 1/2 and det(A) = 0, then to find the equilibrium points, we need to solve the equations
21(t) = @2(t) = 0 for u(t) = u(t) # 0, that is

0= l’l(t) + %.’Ez(t) + U(O) 0= Jil(t) + %zfg(f)

These equations do not have any solution for u(0) # 0; that is, the system does not have any

equilibrium points.

If the matrix A is invertible, regardless of the value of the input signal, the system has one
equilibrium point. If A is not invertible, the existence of equilibrium points depends upon the
value of the input signal. If u(t) = w(0) = 0, there are infinitely many equilibria, whereas if

u(t) = u(0) # 0, there are no equilibria.
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