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Tutorial Problem Sheet 1

Question 1. Consider the translational mechanical system shown in Figure 1, where y1(t) and y2(t)

denote the displacements of the associated masses from their static equilibrium positions, and f(t)

represents a force applied to the first mass m1.

Figure 1: Translational mechanical system.

The system’s parameters are the masses m1 and m2, the viscous damping coefficient c, and the spring

stiffnesses k1 and k2. The input is the applied force u(t) = f(t), and the outputs are taken as the

mass displacements.

Derive a valid state-space realisation for the mechanical system. That is, specify the state variables

and derive the coefficient matrices A, B, C, and D.

Solution 1.

(a) Newton’s second law applied to each mass yields:

m1ÿ1(t) + k1y1(t)− k2[y2(t)− y1(t)] = f(t),

m2ÿ2(t) + cẏ2(t) + k2[y2(t)− y1(t)] = 0.

Define the state variables:

x1(t) = y1(t), x2(t) = y2(t)− y1(t), x3(t) = ẏ1(t), x4(t) = ẏ2(t).

The state-space representation is:

ẋ(t) =


0 0 1 0

0 0 −1 1

− k1

m1

k2

m1
0 0

0 − k2

m2
0 − c

m2

x(t) +


0

0
1

m1

0

u(t),

y(t) =

[
1 0 0 0

1 1 0 0

]
x(t) +

[
0

0

]
u(t).

AIDAN O. T. HOGG



2

Question 2. Consider the electrical network shown in Figure 2. The two inputs are the independent

voltage and current sources vin(t) and iin(t), and the single output is the inductor voltage vL(t).

Figure 2: Electrical Circuit.

Using clockwise circulating mesh currents i1(t), i2(t), and i3(t), Kirchhoff’s voltage and current laws

yield:

R1i1(t) + vC1
(t) + L

d

dt
[i1(t)− i2(t)] = vin(t),

L
d

dt
[i2(t)− i1(t)] + vC2

(t) +R2[i2(t)− i3(t)] = 0,

i3(t) = −iin(t), iL(t) = i1(t)− i2(t).

Derive a valid state-space realisation for the electrical network. That is, specify the state variables

and derive the coefficient matrices A, B, C, and D.

Solution 2.

(a) Define the state variables:

x1(t) = vC1(t), x2(t) = vC2(t), x3(t) = iL(t).

The inputs:

u1(t) = vin(t), u2(t) = iin(t),

and the outputs:

y(t) = vL(t) = Lẋ3(t).

Using the relationship

R1i1(t) + vC1
(t) + L

d

dt
[i1(t)− i2(t)] = vin(t),

can be written as

R1C1ẋ1(t) + Lẋ3(t) = −x1(t) + u1(t) . (2.1)

Then using

L
d

dt
[i2(t)− i1(t)] + vC2(t) +R2[i2(t)− i3(t)] = 0,
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can be written as

R2C2ẋ2(t)− Lẋ3(t) = −x2(t)−R2u2(t) . (2.2)

Finally, using the fact that

C1ẋ1(t) = i1(t), C2ẋ2(t) = i2(t) ,

=⇒ x3(t) = C1ẋ1(t)− C2ẋ2(t) ,

we can write

C1ẋ1(t)− C2ẋ2(t) = x3(t) . (2.3)

Packaging equations (2.1), (2.2) and (2.3) in matrix form and isolating the state-variable time

derivatives givesR1C1 0 L

0 R2C2 −L

C1 −C2 0


ẋ1(t)

ẋ2(t)

ẋ3(t)

 =

−1 0 0

0 −1 0

0 0 1


x1(t)

x2(t)

x3(t)

+

1 0

0 −R2

0 0

[
u1(t)

u2(t)

]
,

and thereforeẋ1(t)

ẋ2(t)

ẋ3(t)

 =

R1C1 0 L

0 R2C2 −L

C1 −C2 0


−1Ö−1 0 0

0 −1 0

0 0 1


x1(t)

x2(t)

x3(t)

+

1 0

0 −R2

0 0

[
u1(t)

u2(t)

]è
,

where R1C1 0 L

0 R2C2 −L

C1 −C2 0


−1

=


1

C1(R1+R2)
1

C1(R1+R2)
R2

C1(R1+R2)

1
C2(R1+R2)

1
C2(R1+R2)

−R1

C2(R1+R2)

R2

L(R1+R2)
−R1

L(R1+R2)
−R1R2

L(R1+R2)



Multiplying through by the inverse yields the state equations:

ẋ1(t)

ẋ2(t)

ẋ3(t)

 =


− 1

C1(R1+R2)
− 1

C1(R1+R2)
R2

C1(R1+R2)

− 1
C2(R1+R2)

− 1
C2(R1+R2)

− R1

C2(R1+R2)

− R2

L(R1+R2)
R1

L(R1+R2)
− R1R2

L(R1+R2)


x1(t)

x2(t)

x3(t)

+


1
C1(R1+R2)

− R2

C1(R1+R2)
1

C2(R1+R2)
− R2

C2(R1+R2)
R2

L(R1+R2)
R1R2

L(R1+R2)


[
u1(t)

u2(t)

]
,

and the output equation:

y(t) =
î
− R2

(R1+R2)
R1

(R1+R2)
− R1R2

(R1+R2)

óx1(t)

x2(t)

x3(t)

+
î

R2

(R1+R2)
R1R2

(R1+R2)

ó[u1(t)

u2(t)

]
.
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Question 3. Consider the matrix

A =

2 0 0

1 1 0

0 0 3

 .

(a) Compute the characteristic polynomial of A and find the eigenvalues of A.

(b) Compute three linearly independent eigenvectors for A.

(c) Find a similarity transformation L such that Â = L−1AL is a diagonal matrix.

(d) Compute eAt as a function of t.

(e) Compute sin(At) as a function of t.

Solution 3.

(a) Compute the characteristic polynomial:

det(sI −A) = det

s− 2 0 0

−1 s− 1 0

0 0 s− 3

 .

Expanding along the third row:

det(sI −A) = (s− 3)× det

[
s− 2 0

−1 s− 1

]
.

Compute the determinant of the 2× 2 matrix:

det

[
s− 2 0

−1 s− 1

]
= (s− 2)(s− 1)− 0 = s2 − 3s+ 2

Thus:

det(sI −A) = (s− 3)(s2 − 3s+ 2).

Factorizing:

det(sI −A) = (s− 3)(s− 2)(s− 1).

Hence, the eigenvalues are λ = 3, 2, 1.

(b) Solve Av = λv for each eigenvalue λ:

For λ = 3:

(A− 3I)v = 0 =⇒

−1 0 0

1 −2 0

0 0 0

 v = 0.

A solution is v1 = [0, 0, 1]⊤.

For λ = 2:

(A− 2I)v = 0 =⇒

0 0 0

1 −1 0

0 0 1

 v = 0.
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A solution is v2 = [1, 1, 0]⊤.

For λ = 1:

(A− I)v = 0 =⇒

1 0 0

1 0 0

0 0 2

 v = 0.

A solution is v3 = [0, 1, 0]⊤.

(c) Let M = [v1, v2, v3] be the matrix of eigenvectors:

M =

0 1 0

0 1 1

1 0 0

 .

Note that

AM = MΛ, =⇒ A = MΛM−1,

hence, L = M and Â = Λ where

Â = Λ =

3 0 0

0 2 0

0 0 1

 .

(d) Compute eAt:

eAt = MeÂtM−1,

where

eÂt =

e3t 0 0

0 e2t 0

0 0 et

 .

To compute M−1, first find the determinant of M :

det(M) =

∣∣∣∣∣∣∣
0 1 0

0 1 1

1 0 0

∣∣∣∣∣∣∣ = 0 ·

∣∣∣∣∣1 1

0 0

∣∣∣∣∣− 1 ·

∣∣∣∣∣0 1

1 0

∣∣∣∣∣+ 0 ·

∣∣∣∣∣0 1

1 0

∣∣∣∣∣ .
det(M) = 0− 1(−1) + 0 = 1.

Since det(M) = 1, the cofactor matrix is:

Cofactor matrix = cof(M) =

0 1 −1

0 0 1

1 0 0

 .

Thus the inverse matrix is:

M−1 =
1

det(M)
cof(M)T =

1

det(M)
adj(M) =

 0 0 1

1 0 0

−1 1 0

 .
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Now compute MeÂt:

MeÂt =

0 1 0

0 1 1

1 0 0


e3t 0 0

0 e2t 0

0 0 et

 =

 0 e2t 0

0 e2t et

e3t 0 0

 .

Finally:

eAt = MeÂtM−1 =

 0 e2t 0

0 e2t et

e3t 0 0


 0 0 1

1 0 0

−1 1 0

 =

 e2t 0 0

e2t − et et 0

0 0 e3t

 .

(e) Compute sin(At):

sin(At) = M sin(Ât)M−1,

where

sin(Ât) =

sin(3t) 0 0

0 sin(2t) 0

0 0 sin(t)

 .

Now compute M sin(Ât):

M sin(Ât) =

0 1 0

0 1 1

1 0 0


sin(3t) 0 0

0 sin(2t) 0

0 0 sin(t)

 =

 0 sin(2t) 0

0 sin(2t) sin(t)

sin(3t) 0 0


Finally:

eAt = M sin(Ât)M−1 =

 0 sin(2t) 0

0 sin(2t) sin(t)

sin(3t) 0 0


 0 0 1

1 0 0

−1 1 0

 =

 sin(2t) 0 0

sin(2t)− sin(t) sin(t) 0

0 0 sin(3t)

 .

Question 4. Consider a linear continuous-time system described by the equations

ẋ1(t) = x1(t) + αx2 + u(t)

ẋ2(t) = x1(t) + x2(t)− αx2(t)

y(t) = x1(t)

with α ∈ R and constant, x(t) = [x1(t), x2(t)]
T ∈ R2 and u(t) ∈ R.

(a) Let u(t) = 0, for all t ≥ 0. Compute the equilibrium points of the system as a function of α.

(b) Assume now u(t) = u(0), for all t ≥ 0, where u(t) ̸= 0. Compute the equilibrium points of the

system as a function of α.

(c) Discuss similarities and differences between the results in part (a) and part (b).

Solution 4.
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(a) To begin with, note that

A =

[
1 α

1 1− α

]
, B =

[
1

0

]
, C =

î
1 0
ó
,

and that det(A) = 1− 2α. If 1− 2α ̸= 0, the matrix A is invertible. Hence the only equilibrium

for u(t) = u(0) = 0 is x(0) = −A−1Bu(0) = 0 for all t ≥ 0. If α = 1/2 and det(A) = 0, then to

find the equilibrium points, we need to solve the equations ẋ1(t) = ẋ2(t) = 0 for u(t) = 0, that

is

0 = x1(t) +
1

2
x2(t) 0 = x1(t) + x2(t)−

1

2
x2(t) = x1(t) +

1

2
x2(t)

This means that all equilibrium points described by

x(t) = x(0) = δ

[
1

−2

]
,

where δ can be any number. Thus, when α = 1/2 and u(t) = u(0) = 0, the system has infinitely

many equilibrium points on a straight line.

(b) As for part (a), if 1− 2α ̸= 0, the matrix A is invertible hence the only equilibrium for u(t) =

u(0) ̸= 0 is x(0) = −A−1Bu(0) = 0 for all t ≥ 0. That is

x(0) =
u(0)

1− 2α

[
1− α −α

−1 1

]
×

[
1

0

]
=

u(0)

1− 2α

[
1− α

−1

]
or

u(0)

2α− 1

[
α− 1

1

]

If α = 1/2 and det(A) = 0, then to find the equilibrium points, we need to solve the equations

ẋ1(t) = ẋ2(t) = 0 for u(t) = u(t) ̸= 0, that is

0 = x1(t) +
1

2
x2(t) + u(0) 0 = x1(t) +

1

2
x2(t)

These equations do not have any solution for u(0) ̸= 0; that is, the system does not have any

equilibrium points.

(c) If the matrix A is invertible, regardless of the value of the input signal, the system has one

equilibrium point. If A is not invertible, the existence of equilibrium points depends upon the

value of the input signal. If u(t) = u(0) = 0, there are infinitely many equilibria, whereas if

u(t) = u(0) ̸= 0, there are no equilibria.
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